Elliptic Curves: 111 (Graduate Texts in Mathematics, 111) - Hardcover

Husemöller, Dale

 
9780387954905: Elliptic Curves: 111 (Graduate Texts in Mathematics, 111)

Synopsis

There are three new appendices, one by Stefan Theisen on the role of Calabi– Yau manifolds in string theory and one by Otto Forster on the use of elliptic curves in computing theory and coding theory. In the third appendix we discuss the role of elliptic curves in homotopy theory. In these three introductions the reader can get a clue to the far-reaching implications of the theory of elliptic curves in mathematical sciences. During the ?nal production of this edition, the ICM 2002 manuscript of Mike Hopkins became available. This report outlines the role of elliptic curves in ho- topy theory. Elliptic curves appear in the form of the Weierstasse equation and its related changes of variable. The equations and the changes of variable are coded in an algebraic structure called a Hopf algebroid, and this Hopf algebroid is related to a cohomology theory called topological modular forms. Hopkins and his coworkers have used this theory in several directions, one being the explanation of elements in stable homotopy up to degree 60. In the third appendix we explain how what we described in Chapter 3 leads to the Weierstrass Hopf algebroid making a link with Hopkins’ paper.

"synopsis" may belong to another edition of this title.

From the Back Cover

This book is an introduction to the theory of elliptic curves, ranging from elementary topics to current research. The first chapters, which grew out of Tate's Haverford Lectures, cover the arithmetic theory of elliptic curves over the field of rational numbers. This theory is then recast into the powerful and more general language of Galois cohomology and descent theory. An analytic section of the book includes such topics as elliptic functions, theta functions, and modular functions. Next, the book discusses the theory of elliptic curves over finite and local fields and provides a survey of results in the global arithmetic theory, especially those related to the conjecture of Birch and Swinnerton-Dyer.

This new edition contains three new chapters. The first is an outline of Wiles's proof of Fermat's Last Theorem. The two additional chapters concern higher-dimensional analogues of elliptic curves, including K3 surfaces and Calabi-Yau manifolds. Two new appendices explore recent applications of elliptic curves and their generalizations. The first, written by Stefan Theisen, examines the role of Calabi-Yau manifolds and elliptic curves in string theory, while the second, by Otto Forster, discusses the use of elliptic curves in computing theory and coding theory.

About the First Edition:

"All in all the book is well written, and can serve as basis for a student seminar on the subject."

-G. Faltings, Zentralblatt

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title