It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson's class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ ential or difference equation and stresses the limit relations between them.
"synopsis" may belong to another edition of this title.
The book offers an accessible reference for researchers in the probability, statistics and special functions communities. It gives a variety of interdisciplinary relations between the two main ingredients of stochastic processes and orthogonal polynomials. It covers topics like time dependent and asymptotic analysis for birth-death processes and diffusions, martingale relations for Levy processes, stochastic integrals and Stein's approximation method. Almost all well-known orthogonal polynomials, which are brought together in the so-called Askey Scheme, come into play. This volume clearly illustrates the powerful mathematical role of orthogonal polynomials in the analysis of stochastic processes and is made accessible for all mathematicians with a basic background in probability theory and mathematical analysis. Wim Schoutens is a Postdoctoral Researcher of the Fund for Scientific Research-Flanders (Belgium). He received his PhD in Science from the Catholic University of Leuven, Belgium.
"About this title" may belong to another edition of this title.
£ 5.95 shipping within United Kingdom
Destination, rates & speedsSeller: LOROS Bookshop, Leicester, United Kingdom
Soft cover. Condition: Very Good. Card covers very clean, very mild creasing of lower outer corner, which continues into leaves of book. Internally, clean and free from markings or annotation. Seller image provided. For further helpful synopsis and reviews try clicking on 'bookseller image'. Selling books since 1999, all proceeds help fund LOROS Charity Hospice. Seller Inventory # 000415
Quantity: 1 available
Seller: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
Paperback. Condition: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 0.59. Seller Inventory # G038795015XI4N00
Quantity: 1 available
Seller: Antiquariat Bernhardt, Kassel, Germany
Broschiert. Condition: Sehr gut. Lecture Notes in Statistics, Band 146. Zust: Gutes Exemplar. XIII, 163 Seiten, Englisch 270g. Seller Inventory # 493407
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780387950150_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1 The Askey Scheme of Orthogonal Polynomials.- 2.1 Markov Processes.- 3 Birth and Death Processes, Random Walks, and Orthogonal Polynomials.- 4 Sheffer Systems.- 5 Orthogonal Polynomials in Stochastic Integration Theory.- Stein Approximation and Orthogonal . Seller Inventory # 5912289
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson's class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ ential or difference equation and stresses the limit relations between them. 184 pp. Englisch. Seller Inventory # 9780387950150
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson's class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ ential or difference equation and stresses the limit relations between them. Seller Inventory # 9780387950150
Quantity: 1 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 620. Seller Inventory # C9780387950150
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson's class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ ential or difference equation and stresses the limit relations between them.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Englisch. Seller Inventory # 9780387950150
Quantity: 2 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 184. Seller Inventory # 26315443
Quantity: 4 available