This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. The purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi- stable) elliptic curve over Q is modular, and to explain how Wiles' result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. Contributors to this volume include: B. Conrad, H. Darmon, E. de Shalit, B. de Smit, F. Diamond, S.J. Edixhoven, G. Frey, S. Gelbart, K. Kramer, H.W. Lenstra, Jr., B. Mazur, K. Ribet, D.E. Rohrlich, M. Rosen, K. Rubin, R. Schoof, A. Silverberg, J.H. Silverman, P. Stevenhagen, G. Stevens, J. Tate, J. Tilouine, and L. Washington. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles' proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre's conjectures, Galois deformations, universal deformation rings, Hecke algebras, complete intersections and more, as the reader is led step-by-step through Wiles' proof. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by looking both forward and backward in time, reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this volume to be an indispensable
"synopsis" may belong to another edition of this title.
"The story of Fermat's last theorem (FLT) and its resolution is now well known. It is now common knowledge that Frey had the original idea linking the modularity of elliptic curves and FLT, that Serre refined this intuition by formulating precise conjectures, that Ribet proved a part of Serre's conjectures, which enabled him to establish that modularity of semistable elliptic curves implies FLT, and that finally Wiles proved the modularity of semistable elliptic curves.
The purpose of the book under review is to highlight and amplify these developments. As such, the book is indispensable to any student wanting to learn the finer details of the proof or any researcher wanting to extend the subject in a higher direction. Indeed, the subject is already expanding with the recent researches of Conrad, Darmon, Diamond, Skinner and others. ...
FLT deserves a special place in the history of civilization. Because of its simplicity, it has tantalized amateurs and professionals alike, and its remarkable fecundity has led to the development of large areas of mathematics such as, in the last century, algebraic number theory, ring theory, algebraic geometry, and in this century, the theory of elliptic curves, representation theory, Iwasawa theory, formal groups, finite flat group schemes and deformation theory of Galois representations, to mention a few. It is as if some supermind planned it all and over the centuries had been developing diverse streams of thought only to have them fuse in a spectacular synthesis to resolve FLT. No single brain can claim expertise in all of the ideas that have gone into this "marvelous proof". In this age of specialization, where "each one of us knows more and more about less and less", it is vital for us to have an overview of the masterpiece such as the one provided by this book." (M. Ram Murty, Mathematical Reviews)
"About this title" may belong to another edition of this title.
£ 2.71 shipping within U.S.A.
Destination, rates & speedsSeller: BOOK2BUY, Lynbrook, NY, U.S.A.
Hardcover. Condition: Good. No Jacket. Hardcover - clean, no marks, clean inside, no dj - from a private collection -. Seller Inventory # 39490.240724
Quantity: 1 available
Seller: Foliobooks, Madison, WI, U.S.A.
Hardcover. Condition: Very Good. 1997 edition. Small area of sticker residue on front FEP where previous owners address label was removed; otherwise clean, unmarked, and undamaged, inside and out. A very nice copy. Seller Inventory # 20230909b
Quantity: 1 available
Seller: Moe's Books, Berkeley, CA, U.S.A.
hardcover. Condition: good. Bottom edge faintly stained. Seller Inventory # 1119571
Quantity: 1 available
Seller: Midway Book Store (ABAA), St. Paul, MN, U.S.A.
Hardcover. Condition: Very Good. Corrected Second Printing. 24 x 16 cm. xx 582pp. Index. Bound into glossy yellow boards. Bump to tail of spine. "This volume is a record of an instructional conference on number theory and arithmetic geometry held from August 9 through 18, 1995 at Boston University. It contains expanded version of all of the major lectures given during the conference.". Seller Inventory # 79664
Quantity: 1 available
Seller: Phatpocket Limited, Waltham Abbey, HERTS, United Kingdom
Condition: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Seller Inventory # Z1-A-012-02809
Quantity: 1 available
Seller: Anybook.com, Lincoln, United Kingdom
Condition: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1050grams, ISBN:9780387946092. Seller Inventory # 4840799
Quantity: 1 available
Seller: Grumpys Fine Books, Tijeras, NM, U.S.A.
Hardcover. Condition: new. Prompt service guaranteed. Seller Inventory # Clean0387946098
Quantity: 1 available
Seller: Antiquariat Jochen Mohr -Books and Mohr-, Oberthal, Germany
hardcover. Condition: Sehr gut. 2., corr. Printing. 582 Seiten This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. The purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi- stable) elliptic curve over Q is modular, and to explain how Wiles' result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. Contributors to this volume include: B. Conrad, H. Darmon, E. de Shalit, B. de Smit, F. Diamond, S.J. Edixhoven, G. Frey, S. Gelbart, K. Kramer, H.W. Lenstra, Jr., B. Mazur, K. Ribet, D.E. Rohrlich, M. Rosen, K. Rubin, R. Schoof, A. Silverberg, J.H. Silverman, P. Stevenhagen, G. Stevens, J. Tate, J. Tilouine, and L. Washington. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles' proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre's conjectures, Galois deformations, universal deformation rings, Hecke algebras, complete intersections and more, as the reader is led step-by-step through Wiles' proof. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by looking both forward and backward in time, reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this volume to be an indispensable TOC:Preface.- Contributors.- Schedule of Lectures.- Introduction.- An Overview of the Proof of Fermat's Last Theorem.- A Survey of the Arithmetic Theory of Elliptic Curves.- Modular Curves, Hecke Correspondences, and L-Functions.- Galois Cohomology.- Finite Flat Group Schemes.- Three Lectures on the Modularity of PE.3 and the Langlands Reciprocity Conjecture.- Serre's Conjectures.- An Introduction to the Deformation Theory of Galois Representations.- Explicit Construction of Universal Deformation Rings.- Hecke Algebras and the Gorenstein Property.- Criteria for Complete Intersections.- l-adic Modular Deformations and Wiles's "Main Conjecture".- The Flat Deformation Functor.- Hecke Rings and Universal Deformation Rings.- Explicit Families of Elliptic Curves with Prescribed Mod N Representations.- Modularity of Mod 5 Representations.- An Extension of Wiles' Results.- Appendix to Chapter 17: Classification of PE.1 by the j Invariant of E.- Class Field Theory and the First Case of Fermat's Last Theorem.- Remarks on the History of Fermat's Last Theorem 1844 to 1984.- On Ternary Equations of Fermat Type and Relations with Elliptic Curves.- Wiles' Theorem and the Arithmetic of Elliptic Curves. 9780387946092 Wir verkaufen nur, was wir auch selbst lesen würden. Sprache: Deutsch Gewicht in Gramm: 967. Seller Inventory # 88758
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780387946092_new
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 22002247
Quantity: Over 20 available