The present book gives an exposition of the classical basic algebraic and analytic number theory and supersedes my Algebraic Numbers, including much more material, e. g. the class field theory on which 1 make further comments at the appropriate place later. For different points of view, the reader is encouraged to read the collec tion of papers from the Brighton Symposium (edited by Cassels-Frohlich), the Artin-Tate notes on class field theory, Weil's book on Basic Number Theory, Borevich-Shafarevich's Number Theory, and also older books like those of W eber, Hasse, Hecke, and Hilbert's Zahlbericht. It seems that over the years, everything that has been done has proved useful, theo retically or as examples, for the further development of the theory. Old, and seemingly isolated special cases have continuously acquired renewed significance, often after half a century or more. The point of view taken here is principally global, and we deal with local fields only incidentally. For a more complete treatment of these, cf. Serre's book Corps Locaux. There is much to be said for a direct global approach to number fields. Stylistically, 1 have intermingled the ideal and idelic approaches without prejudice for either. 1 also include two proofs of the functional equation for the zeta function, to acquaint the reader with different techniques (in some sense equivalent, but in another sense, suggestive of very different moods).
"synopsis" may belong to another edition of this title.
Second Edition
S. Lang
Algebraic Number Theory
"This book is the second edition of Lang's famous and indispensable book on algebraic number theory. The major change from the previous edition is that the last chapter on explicit formulas has been completely rewritten. In addition, a few new sections have been added to the other chapters . . . Lang's books are always of great value for the graduate student and the research mathematician. This updated edition of Algebraic number theory is no exception."―MATHEMATICAL REVIEWS
"About this title" may belong to another edition of this title.
£ 9.39 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Better World Books: West, Reno, NV, U.S.A.
Condition: Very Good. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. Seller Inventory # GRP94625855
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 1798859-n
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In English. Seller Inventory # ria9780387942254_new
Quantity: Over 20 available
Seller: Antiquariat Bernhardt, Kassel, Germany
Karton. Condition: Sehr gut. Zust: Gutes Exemplar. 357 Seiten, Englisch 710g. Seller Inventory # 493911
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 1798859
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is a second edition of Lang's well-known textbook. It covers all of the basic material of classical algebraic number theory, giving the student the background necessary for the study of further topics in algebraic number theory, such as cyclotomic fields, or modular forms.'Lang's books are always of great value for the graduate student and the research mathematician. This updated edition of Algebraic number theory is no exception.'--MATHEMATICAL REVIEWS 376 pp. Englisch. Seller Inventory # 9780387942254
Quantity: 2 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Hardback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 733. Seller Inventory # C9780387942254
Quantity: Over 20 available
Seller: Moe's Books, Berkeley, CA, U.S.A.
Hard Cover. Condition: Good. No Jacket. Spine is tight. Cover is lightly worn, particularly along edges. Back cover is rubbed, but legibility is not affected. Fore and bottom edges are stained, but readability is not impacted. Inside is marked in blue and red pen. Seller Inventory # 1112292
Quantity: 1 available
Seller: Rarewaves.com UK, London, United Kingdom
Hardback. Condition: New. 2nd ed. 1994. The present book gives an exposition of the classical basic algebraic and analytic number theory and supersedes my Algebraic Numbers, including much more material, e. g. the class field theory on which 1 make further comments at the appropriate place later. For different points of view, the reader is encouraged to read the collec tion of papers from the Brighton Symposium (edited by Cassels-Frohlich), the Artin-Tate notes on class field theory, Weil's book on Basic Number Theory, Borevich-Shafarevich's Number Theory, and also older books like those of W eber, Hasse, Hecke, and Hilbert's Zahlbericht. It seems that over the years, everything that has been done has proved useful, theo retically or as examples, for the further development of the theory. Old, and seemingly isolated special cases have continuously acquired renewed significance, often after half a century or more. The point of view taken here is principally global, and we deal with local fields only incidentally. For a more complete treatment of these, cf. Serre's book Corps Locaux. There is much to be said for a direct global approach to number fields. Stylistically, 1 have intermingled the ideal and idelic approaches without prejudice for either. 1 also include two proofs of the functional equation for the zeta function, to acquaint the reader with different techniques (in some sense equivalent, but in another sense, suggestive of very different moods). Seller Inventory # LU-9780387942254
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The present book gives an exposition of the classical basic algebraic and analytic number theory and supersedes my Algebraic Numbers, including much more material, e. g. the class field theory on which 1 make further comments at the appropriate place later. For different points of view, the reader is encouraged to read the collec tion of papers from the Brighton Symposium (edited by Cassels-Frohlich), the Artin-Tate notes on class field theory, Weil's book on Basic Number Theory, Borevich-Shafarevich's Number Theory, and also older books like those of W eber, Hasse, Hecke, and Hilbert's Zahlbericht. It seems that over the years, everything that has been done has proved useful, theo retically or as examples, for the further development of the theory. Old, and seemingly isolated special cases have continuously acquired renewed significance, often after half a century or more. The point of view taken here is principally global, and we deal with local fields only incidentally. For a more complete treatment of these, cf. Serre's book Corps Locaux. There is much to be said for a direct global approach to number fields. Stylistically, 1 have intermingled the ideal and idelic approaches without prejudice for either. 1 also include two proofs of the functional equation for the zeta function, to acquaint the reader with different techniques (in some sense equivalent, but in another sense, suggestive of very different moods). Seller Inventory # 9780387942254
Quantity: 1 available