Real and Functional Analysis: Third Edition: 142 (Graduate Texts in Mathematics, 142) - Hardcover

Book 31 of 180: Graduate Texts in Mathematics

Lang, Serge

 
9780387940014: Real and Functional Analysis: Third Edition: 142 (Graduate Texts in Mathematics, 142)

Synopsis

This book is meant as a text for a first year graduate course in analysis. Any standard course in undergraduate analysis will constitute sufficient preparation for its understanding, for instance, my Undergraduate Anal­ ysis. I assume that the reader is acquainted with notions of uniform con­ vergence and the like. In this third edition, I have reorganized the book by covering inte­ gration before functional analysis. Such a rearrangement fits the way courses are taught in all the places I know of. I have added a number of examples and exercises, as well as some material about integration on the real line (e.g. on Dirac sequence approximation and on Fourier analysis), and some material on functional analysis (e.g. the theory of the Gelfand transform in Chapter XVI). These upgrade previous exercises to sections in the text. In a sense, the subject matter covers the same topics as elementary calculus, viz. linear algebra, differentiation and integration. This time, however, these subjects are treated in a manner suitable for the training of professionals, i.e. people who will use the tools in further investiga­ tions, be it in mathematics, or physics, or what have you. In the first part, we begin with point set topology, essential for all analysis, and we cover the most important results.

"synopsis" may belong to another edition of this title.

Synopsis

This book is meant as a text for a first-year graduate course in analysis. In a sense, the subject matter covers the same topics as elementary calculus - linear algebra, differentiation, integration - but treated in a manner suitable for people who will be using it in further mathematical investigations. The book begins with point-set topology, essential for all analysis. The second part deals with the two basic spaces of analysis, Banach and Hilbert spaces. The book then turns to the subject of integration and measure. After a general introduction, it covers duality and representation theorems, some applications (such as Dirac sequences and Fourier transforms), integration and measures on locally compact spaces, the Riemann-Stjeltes integral, distributions, and integration on locally compact groups. Part four deals with differential calculus (with values in a Banach space). The next part deals with functional analysis. It includes several major spectral theorems of analysis, showing how one can extend to infinite dimensions certain results from finite-dimensional linear algebra; a discussion of compact and Fredholm operators; and spectral theorems for Hermitian operators.

The final part, on global analysis, provides an introduction to differentiable manifolds. The text includes worked examples and numerous exercises, which should be viewed as an integral part of the book. The organization of the book avoids long chains of logical interdependence, so that chapters are as independent as possible. This allows a course using the book to omit material from some chapters without compromising the exposition of material from later chapters.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9781461269380: Real and Functional Analysis: 142 (Graduate Texts in Mathematics, 142)

Featured Edition

ISBN 10:  1461269385 ISBN 13:  9781461269380
Publisher: Springer, 2012
Softcover