Lectures on Riemann Surfaces: 81 (Graduate Texts in Mathematics, 81) - Hardcover

Forster, Otto

 
9780387906171: Lectures on Riemann Surfaces: 81 (Graduate Texts in Mathematics, 81)

Synopsis

This book grew out of lectures on Riemann surfaces which the author gave at the universities of Munich, Regensburg and Munster. Its aim is to give an introduction to this rich and beautiful subject, while presenting methods from the theory of complex manifolds which, in the special case of one complex variable, turn out to be particularly elementary and transparent. The book is divided into three chapters. In the first chapter we consider Riemann surfaces as covering spaces and develop a few basics from topology which are needed for this. Then we construct the Riemann surfaces which arise via analytic continuation of function germs. In particular this includes the Riemann surfaces of algebraic functions. As well we look more closely at analytic functions which display a special multi-valued behavior. Examples of this are the primitives of holomorphic i-forms and the solutions of linear differential equations. The second chapter is devoted to compact Riemann surfaces. The main classical results, like the Riemann-Roch Theorem, Abel's Theorem and the Jacobi inversion problem, are presented. Sheaf cohomology is an important technical tool. But only the first cohomology groups are used and these are comparatively easy to handle. The main theorems are all derived, following Serre, from the finite dimensionality of the first cohomology group with coefficients in the sheaf of holomorphic functions. And the proof of this is based on the fact that one can locally solve inhomogeneous Cauchy­ Riemann equations and on Schwarz' Lemma.

"synopsis" may belong to another edition of this title.

Review

O. Forster and B. Gilligan

Lectures on Riemann Surfaces

"A very attractive addition to the list in the form of a well-conceived and handsomely produced textbook based on several years' lecturing experience . . . This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces. The reviewer is inclined to think that it may well become a favorite." --Mathematical Reviews

Synopsis

This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Munster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. The material corresponds roughly to three semesters of lectures, arranged in a flexible sequence involving a minimum of prerequisites. In the first chapter, the author considers Riemann surfaces as covering spaces, develops the pertinent basics of topology, and focuses on algebraic functions. The next chapter is devoted to the theory of compact Riemann surfaces and cohomology groups, with the main classical results (including the Riemann-Roch theorem, Abel's theorem, and Jacobi's inversion problem). The final section covers the Riemann mapping theorem for simply connected Riemann surfaces, and the main theorems of Behnke-Stein for non-compact Riemann surfaces (the Runge approximation theorem and the theorems of Mittag-Leffler and Weierstrass). The value of this translation is enhanced by newly prepared exercises.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title