Process Optimization: A Statistical Approach: 105 (International Series in Operations Research & Management Science, 105) - Hardcover

Book 87 of 323: International Series in Operations Research & Management Science

Del Castillo, Enrique

 
9780387714349: Process Optimization: A Statistical Approach: 105 (International Series in Operations Research & Management Science, 105)

Synopsis

PROCESS OPTIMIZATION: A Statistical Approach is a textbook for a course in experimental optimization techniques for industrial production processes and other "noisy" systems where the main emphasis is process optimization. The book can also be used as a reference text by Industrial, Quality and Process Engineers and Applied Statisticians working in industry, in particular, in semiconductor/electronics manufacturing and in biotech manufacturing industries.

"synopsis" may belong to another edition of this title.

From the Back Cover

PROCESS OPTIMIZATION: A Statistical Approach is a textbook for a course in experimental optimization techniques for industrial production processes and other "noisy" systems where the main emphasis is process optimization. The book can also be used as a reference text by Industrial, Quality and Process Engineers and Applied Statisticians working in industry, in particular, in semiconductor/electronics manufacturing and in biotech manufacturing industries.

The major features of PROCESS OPTIMIZATION: A Statistical Approach are:

  • It provides a complete exposition of mainstream experimental design techniques, including designs for first and second order models, response surface and optimal designs;
  • Discusses mainstream response surface method in detail, including unconstrained and constrained (i.e., ridge analysis and dual and multiple response) approaches;
  • Includes an extensive discussion of Robust Parameter Design (RPD) problems, including experimental design issues such as Split Plot designs and recent optimization approaches used for RPD;
  • Presents a detailed treatment of Bayesian Optimization approaches based on experimental data (including an introduction to Bayesian inference), including single and multiple response optimization and model robust optimization;
  • Provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization and more;
  • Contains a discussion on robust optimization methods as used in mathematical programming and their application in response surface optimization;
  • Offers software programs written in MATLAB and MAPLE to implement Bayesian and frequentist process optimization methods;
  • Provides an introduction to the optimization of computer and simulation experiments including and introduction to stochastic approximation and stochastic perturbation stochastic approximation (SPSA) methods;
  • Includes an introduction to Kriging methods and experimental design for computer experiments;

Provides extensive appendices on Linear Regression, ANOVA, and Optimization Results.


 

"About this title" may belong to another edition of this title.