Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of "classical" survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome.
Features
This book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis.
"synopsis" may belong to another edition of this title.
Catherine Legrand is Professor in Statistics and Biostatistics at the Institute of Statistics, Biostatistics, and Actuarial Sciences (ISBA-LIDAM) of the Université Catholique de Louvain (UCLouvain, Belgium). She obtained a Master Degree in Mathematics from the Université Libre de Bruxelles (ULB, Belgium) in 1998. She worked for 7 years at the European Organization for Research and Treatment of Cancer (EORTC, Brussels) and became the primary statistician of the EORTC Lung Cancer Group. She was also a member of the EORTC Treatment Outcome Research Group, the Elderly Task Force, and coordinator of the EORTC Independent Data Monitoring Committee. In parallel, she completed a PhD in 2005 at the Center for Statistics, Hasselt University, in the field of survival analysis (frailty models). Early 2006, she started working as biometrician at Merck Sharp & Dohme (MSD) where she was involved in the design and analysis of clinical trials in respiratory diseases. In September 2007, she joined the Université Catholique de Louvain (UCLouvain). Her area of research includes survival data analysis, design and analysis of clinical trials and analysis of medical data. Along with these professional experiences, she co-authored more than 80 papers in peer-reviewed clinical and statistical journals.
"About this title" may belong to another edition of this title.
FREE shipping within United Kingdom
Destination, rates & speedsSeller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 44725926-n
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. New copy - Usually dispatched within 4 working days. 185. Seller Inventory # B9780367715366
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780367715366_new
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 401619661
Quantity: 3 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9780367715366
Quantity: 10 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9780367715366
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of 'classical' survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome. Features Presents state-of-the art approaches for different advanced survival models including frailty models, cure models, competing risk models and joint models for a longitudinal and a survival outcomeUses consistent notation throughout the book for the different techniques presentedExplains in which situation each of these models should be used, and how they are linked to specific research questionsFocuses on the understanding of the models, their implementation, and their interpretation, with an appropriate level of methodological development for masters students and applied statisticiansProvides references to existing R packages and SAS procedure or macros, and illustrates the use of the main ones on real datasetsThis book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis. 362 pp. Englisch. Seller Inventory # 9780367715366
Quantity: 2 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 44725926
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9780367715366
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9780367715366
Quantity: Over 20 available