The technological means now exists for approaching the fundamentallimiting scales of solid state electronics in which a single carrier can, in principle, represent a single bit in an information flow. In this light, the prospect of chemically, or biologically, engineered molccular-scale structures which might support information processing functions has enticed workers for many years. The one common factor in all suggested molecular switches, ranging from the experimentally feasible proton-tunneling structure, to natural systems such as the micro-tubule, is that each proposed structure deals with individual information carrying entities. Whereas this future molecular electronics faces enormous technical challenges, the same Iimit is already appearing in existing semiconducting quantum wires and small tunneling structures, both superconducting and normal meta! devices, in which the motion of a single eh arge through the tunneling barrier can produce a sufficient voltage change to cut-off further tunneling current. We may compare the above situation with today's Si microelectronics, where each bit is encoded as a very !arge number, not necessarily fixed, of electrons within acharge pulse. The associated reservoirs and sinks of charge carriers may be profitably tapped and manipulated to proviele macro-currents which can be readily amplified or curtailed. On the other band, modern semiconductor ULSI has progressed by adopting a linear scaling principle to the down-sizing of individual semiconductor devices.
"synopsis" may belong to another edition of this title.
The lecture notes of the invited speakers and the contributed short papers from the participants (presented at poster sessions) are focused around four major parallel themes theory, fabrication, phenomena, and devices as they relate to areas germane to granular nanoelectronics (mesoscopic systems, small quantum systems, Josephson junctions, molecul
"About this title" may belong to another edition of this title.
£ 13.88 shipping from Germany to U.S.A.
Destination, rates & speedsSeller: Antiquariat Bookfarm, Löbnitz, Germany
Hardcover. 590 S. Ehem. Bibliotheksexemplar mit Bib.-Signatur und Stempel in GUTEM Zustand. Kaum Gebrauchsspuren. 030643881X Sprache: Englisch Gewicht in Gramm: 550. Seller Inventory # 2143512
Quantity: 1 available
Seller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 1654067/202
Quantity: 1 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9780306438813
Quantity: 2 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2215580098783
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780306438813_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Based on a NATO ASI held in Il Ciocco, Italy, July 23--August 3, 1990 The technological means now exists for approaching the fundamentallimiting scales of solid state electronics in which a single carrier can, in principle, represent a single bit in an. Seller Inventory # 5901845
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The technological means now exists for approaching the fundamentallimiting scales of solid state electronics in which a single carrier can, in principle, represent a single bit in an information flow. In this light, the prospect of chemically, or biologically, engineered molccular-scale structures which might support information processing functions has enticed workers for many years. The one common factor in all suggested molecular switches, ranging from the experimentally feasible proton-tunneling structure, to natural systems such as the micro-tubule, is that each proposed structure deals with individual information carrying entities. Whereas this future molecular electronics faces enormous technical challenges, the same Iimit is already appearing in existing semiconducting quantum wires and small tunneling structures, both superconducting and normal meta! devices, in which the motion of a single eh arge through the tunneling barrier can produce a sufficient voltage change to cut-off further tunneling current. We may compare the above situation with today's Si microelectronics, where each bit is encoded as a very !arge number, not necessarily fixed, of electrons within acharge pulse. The associated reservoirs and sinks of charge carriers may be profitably tapped and manipulated to proviele macro-currents which can be readily amplified or curtailed. On the other band, modern semiconductor ULSI has progressed by adopting a linear scaling principle to the down-sizing of individual semiconductor devices. 608 pp. Englisch. Seller Inventory # 9780306438813
Quantity: 2 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -The technological means now exists for approaching the fundamentallimiting scales of solid state electronics in which a single carrier can, in principle, represent a single bit in an information flow. In this light, the prospect of chemically, or biologically, engineered molccular-scale structures which might support information processing functions has enticed workers for many years. The one common factor in all suggested molecular switches, ranging from the experimentally feasible proton-tunneling structure, to natural systems such as the micro-tubule, is that each proposed structure deals with individual information carrying entities. Whereas this future molecular electronics faces enormous technical challenges, the same Iimit is already appearing in existing semiconducting quantum wires and small tunneling structures, both superconducting and normal meta! devices, in which the motion of a single eh arge through the tunneling barrier can produce a sufficient voltage change to cut-off further tunneling current. We may compare the above situation with today's Si microelectronics, where each bit is encoded as a very !arge number, not necessarily fixed, of electrons within acharge pulse. The associated reservoirs and sinks of charge carriers may be profitably tapped and manipulated to proviele macro-currents which can be readily amplified or curtailed. On the other band, modern semiconductor ULSI has progressed by adopting a linear scaling principle to the down-sizing of individual semiconductor devices.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 608 pp. Englisch. Seller Inventory # 9780306438813
Quantity: 2 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 608. Seller Inventory # 26526263
Quantity: 4 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The technological means now exists for approaching the fundamentallimiting scales of solid state electronics in which a single carrier can, in principle, represent a single bit in an information flow. In this light, the prospect of chemically, or biologically, engineered molccular-scale structures which might support information processing functions has enticed workers for many years. The one common factor in all suggested molecular switches, ranging from the experimentally feasible proton-tunneling structure, to natural systems such as the micro-tubule, is that each proposed structure deals with individual information carrying entities. Whereas this future molecular electronics faces enormous technical challenges, the same Iimit is already appearing in existing semiconducting quantum wires and small tunneling structures, both superconducting and normal meta! devices, in which the motion of a single eh arge through the tunneling barrier can produce a sufficient voltage change to cut-off further tunneling current. We may compare the above situation with today's Si microelectronics, where each bit is encoded as a very !arge number, not necessarily fixed, of electrons within acharge pulse. The associated reservoirs and sinks of charge carriers may be profitably tapped and manipulated to proviele macro-currents which can be readily amplified or curtailed. On the other band, modern semiconductor ULSI has progressed by adopting a linear scaling principle to the down-sizing of individual semiconductor devices. Seller Inventory # 9780306438813
Quantity: 1 available