Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
"synopsis" may belong to another edition of this title.
A unified approach to AI, machine learning, and control
Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In this book, we provide an explanation of the key ideas and algorithms of reinforcement learning. The discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. This book is meant to be an introductory treatment of reinforcement learning, emphasizing foundations and ideas rather than the latest developments and mathematical proofs. We divide the ideas underlying the field into a half dozen primary dimensions, consider each in detail, and then combine them to form a much larger space of possible methods including all the most popular ones from Q-learning to value iteration and heuristic search. In this way we have tried to make the book interesting to both newcomers and experts alike. We have tried to make the work accessible to the broadest possible audiences in artificial intelligence, control engineering, operations research, psychology, and neuroscience. If you are a teacher, we urge you to consider creating or altering a course to use the book. We have found that the book works very well as the text for a course on reinforcement learning at the graduate or advanced undergraduate level. The eleven chapters can be covered one per week. Exercises are provided in each chapter to help the students think on their own about the material. Answers to the exercises are available to instructors, for now from me, and probably later from MIT Press in an instructor's manual. Programming projects are also suggested throughout the book. Of course, the book can also be used to help teach reinforcement learning as it is most commonly done now, that is, as part of a broader course on machine learning, artificial intelligence, neural networks, or advanced control. I have taught all the material in the book in as little as four weeks, and of course subsets can be covered in less time. Table of contents: Part I: The Problem 1 Introduction 2 Evaluative Feedback 3 The Reinforcement Learning Problem Part II: Elementary Methods 4 Dynamic Programming 5 Monte Carlo Methods 6 Temporal Difference Learning Part III: A Unified View 7 Eligibility Traces 8 Generalization and Function Approximation 9 Planning and Learning 10 Dimensions of Rreinforcement Learning 11 Case Studies For further information, see http://envy.cs.umass.edu/~rich/book/the-book.html.
Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. This text aims to provide a clear and simple account of the key ideas and algorithms of reinforcement learning. The discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part one defines the reinforcement learning problems in terms of Markov decision problems. Part two provides basic solution methods - dynamic programming, Monte Carlo simulation and temporal-difference learning - and part three presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces and planning. The two final chapters present case studies and consider the future of reinforcement learning.
"About this title" may belong to another edition of this title.
FREE shipping within U.S.A.
Destination, rates & speedsSeller: Better World Books, Mishawaka, IN, U.S.A.
Condition: Good. Used book that is in clean, average condition without any missing pages. Seller Inventory # GRP14609677
Quantity: 1 available
Seller: SecondSale, Montgomery, IL, U.S.A.
Condition: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00086014419
Quantity: 2 available
Seller: SecondSale, Montgomery, IL, U.S.A.
Condition: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00086248199
Quantity: 1 available
Seller: HPB-Red, Dallas, TX, U.S.A.
Hardcover. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_429704693
Quantity: 1 available
Seller: TextbookRush, Grandview Heights, OH, U.S.A.
Condition: Like New. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Seller Inventory # 54701440
Quantity: 1 available
Seller: TextbookRush, Grandview Heights, OH, U.S.A.
Condition: Very Good. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Seller Inventory # 54701459
Quantity: 3 available
Seller: WorldofBooks, Goring-By-Sea, WS, United Kingdom
Hardback. Condition: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Seller Inventory # GOR005124400
Quantity: 1 available
Seller: medimops, Berlin, Germany
Condition: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Seller Inventory # M00262193981-V
Quantity: 1 available