Engineering Rheology: 52 (Oxford Engineering Science Series) - Hardcover

Tanner, Roger I.

 
9780198564737: Engineering Rheology: 52 (Oxford Engineering Science Series)

Synopsis

This book sets out to provide a guide, with examples, for those who wish to make predictions about the mechanical and thermal behaviour of non-Newtonian materials in engineering and processing technology. After an introductory survey of the field and a review of basic continuum mechanics, the radical differences between elongational and shear behaviour are shown. Two chapters, one based on a continuum approach and the other using microstructural approaches, lead to useful mathematical desriptions of materials for engineering applications. As examples of nearly-viscometric and nearly-elongational flows, there is a discussion of lubrication and related shearing flows, and fibre- spinning and film-blowing respectively. A long chapter is devoted to the important new field of computational rheology, and this is followed by chapters on stability and turbulence and the all-important temperature effects in flow. This new edition contains much new material not available in book form elsewhere-for example wall slip, suspension rheology, computational rheology and new results in stability theory.

"synopsis" may belong to another edition of this title.

Review

"After an introductory survey of the field and a review of basic continuum mechanics, the difference between elongational and shear behavior are discussed. Two chapters, one based on a continuum approach and the other using microstructural approaches, lead to mathematical descriptions of materials
for engineering applications. Lubrication and related shearing flows are discussed, as are fiber-spinning and film-blowing, as examples of nearly viscometric and nearly elongational flows. Other chapters deal with computational rheology, stability and turbulence, and temperature effects in flow. The
second editions contains new material on wall slip, suspension rheology, and computational rheology, and new results in stability theory." -- Mechanical Engineering, Oct 2000
"After an introductory survey of the field and a review of basic continuum mechanics, the difference between elongational and shear behavior are discussed. Two chapters, one based on a continuum approach and the other using microstructural approaches, lead to mathematical descriptions of materials
for engineering applications. Lubrication and related shearing flows are discussed, as are fiber-spinning and film-blowing, as examples of nearly viscometric and nearly elongational flows. Other chapters deal with computational rheology, stability and turbulence, and temperature effects in flow. The
second editions contains new material on wall slip, suspension rheology, and computational rheology, and new results in stability theory." -- Mechanical Engineering, Oct 2000
"After an introductory survey of the field and a review of basic continuum mechanics, the difference between elongational and shear behavior are discussed. Two chapters, one based on a continuum approach and the other using microstructural approaches, lead to mathematical descriptions of materials for engineering applications. Lubrication and related shearing flows are discussed, as are fiber-spinning and film-blowing, as examples of nearly viscometric and nearly elongational flows. Other chapters deal with computational rheology, stability and turbulence, and temperature effects in flow. The second editions contains new material on wall slip, suspension rheology, and computational rheology, and new results in stability theory." -- Mechanical Engineering, Oct 2000
"After an introductory survey of the field and a review of basic continuum mechanics, the difference between elongational and shear behavior are discussed. Two chapters, one based on a continuum approach and the other using microstructural approaches, lead to mathematical descriptions of materials for engineering applications. Lubrication and related shearing flows are discussed, as are fiber-spinning and film-blowing, as examples of nearly viscometric and nearly elongational flows. Other chapters deal with computational rheology, stability and turbulence, and temperature effects in flow. The second editions contains new material on wall slip, suspension rheology, and computational rheology, and new results in stability theory." -- Mechanical Engineering, Oct 2000


"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title