This systematic exploration of real-world stress analysis has been completely revised and updated to reflect state-of-the-art methods and applications now in use throughout the fields of aeronautical, civil, and mechanical engineering and engineering mechanics. Distinguished by its exceptional visual interpretations of the solutions, it offers an in-depth coverage of the subjects for students and practicing engineers. The authors carefully balance comprehensive treatments of solid mechanics, elasticity, and computer-oriented numerical methods. In addition, a wide range of fully worked illustrative examples and an extensive problem sets–many taken directly from engineering practice–have been incorporated.

Key additions to the Fourth Edition of this highly acclaimed textbook are materials dealing with failure theories, fracture mechanics, compound cylinders, numerical approaches, energy and variational methods, buckling of stepped columns, common shell types, and more. Contents include stress, strain and stress-strain relations, problems in elasticity, static and dynamic failure criteria, bending of beams and torsion of bars, finite difference and finite element methods, axisymmetrically loaded members, beams on elastic foundations, energy methods, elastic stability, plastic behavior of materials, stresses in plates and shells, and selected references to expose readers to the latest information in the field.

*"synopsis" may belong to another edition of this title.*

**ANSEL C. UGURAL**, Ph.D., is Research Professor at New Jersey Institute of Technology. He has held various faculty and administrative positions at Fairleigh Dickinson University, and he taught at the University of Wisconsin. Ugural has considerable industrial experience in both full-time and consulting capacities. A member of several professional societies, he is the author of the books *Mechanics of Materials*, *Stresses in Plates and Shells*, and *Mechanical Design: An Integrated Approach*.

**SAUL K. FENSTER**, Ph.D., is Professor at New Jersey Institute of Technology, where he served as a president for over two decades. In addition to experience in industry, he has held varied positions at Fairleigh Dickinson University and taught at the City University of New York. Fenster, a Fellow of the American Society of Mechanical Engineers and the American Society for Engineering Education, is co-author of a text on mechanics.

*"About this title" may belong to another edition of this title.*

Published by
Prentice Hall
(2003)

ISBN 10: 0130473928
ISBN 13: 9780130473929

New
Hardcover
Quantity Available: 2

Seller

Rating

**Book Description **Prentice Hall, 2003. Hardcover. Book Condition: New. Brand New Text!!! Never Been Used!!! Edges barely worn. Barely shelfwear. This text is totally clean with no writing at all!!!. Bookseller Inventory # 94287

More Information About This Seller | Ask Bookseller a Question

Published by
Prentice Hall
(2003)

ISBN 10: 0130473928
ISBN 13: 9780130473929

New
Hardcover
Quantity Available: 1

Seller

Rating

**Book Description **Prentice Hall, 2003. Hardcover. Book Condition: New. 4. Bookseller Inventory # DADAX0130473928

More Information About This Seller | Ask Bookseller a Question

Published by
Prentice Hall
(2003)

ISBN 10: 0130473928
ISBN 13: 9780130473929

New
Hardcover
Quantity Available: 1

Seller

Rating

**Book Description **Prentice Hall, 2003. Hardcover. Book Condition: New. book. Bookseller Inventory # 0130473928

More Information About This Seller | Ask Bookseller a Question

Published by
Prentice Hall
(2003)

ISBN 10: 0130473928
ISBN 13: 9780130473929

New
Hardcover
Quantity Available: 3

Seller

Rating

**Book Description **Prentice Hall, 2003. Hardcover. Book Condition: New. Bookseller Inventory # P110130473928

More Information About This Seller | Ask Bookseller a Question

Published by
Prentice Hall
(2003)

ISBN 10: 0130473928
ISBN 13: 9780130473929

New
Hardcover
Quantity Available: 1

Seller

Rating

**Book Description **Prentice Hall, 2003. Book Condition: New. Brand New, Unread Copy in Perfect Condition. A+ Customer Service! Summary: (NOTE: Each chapter ends with Problems.) Preface to the Fourth Edition. List of Symbols. 1. Analysis of Stress. Introduction. Scope of Treatment. Definition of Stress. Components of Stress: Stress Tensor. Some Special Cases of Stress. Internal Force-Resultant and Stress Relations. Stresses on Inclined Planes in an Axially Loaded Member. Variation of Stress within a Body. Two-Dimensional Stress at a Point. Principal Stresses and Maximum Shear Stress in Two Dimensions. Mohr's Circle for Two-Dimensional Stress. Three-Dimensional Stress at a Point. Principal Stresses in Three Dimensions. Normal and Shear Stresses on an Oblique Plane. Mohr's Circle for Three-Dimensional Stress. Boundary Conditions in Terms of Surface Forces. 2. Strain and Stress-Strain Relations. Introduction. Deformation. Strain Defined. Equations of Compatibility. State of Strain at a Point. Engineering Materials. Stress-Strain Diagrams. Hooke's Law and Poisson's Ratio. Generalized Hooke's Law. Measurement of Strain: Bonded Strain Gages. Strain Energy. Strain Energy in Common Structural Member. Components of Strain Energy. Saint-Venant's Principle. 3. Two-Dimensional Problems in Elasticity. Introduction. Fundamental Principles of Analysis. Part A-Formulation and Methods of Solution. Plane Strain Problems. Plane Stress Problems. Airy's Stress Function. Solution of Elasticity Problems. Thermal Stresses. Basic Relations in Polar Coordinates. Part B-Stress Concentrations. Stresses Due to Concentrated Loads. Stress Distribution near Concentrated Load Acting on a Beam. Stress Concentration Factors. NEUBER'S DIAGRAM. Contact Stresses. 4. Failure Criteria. Introduction. Failure. Failure by Yielding. Failure by Fracture. Yield and Fracture Criteria. Maximum Shearing Stress Theory. Maximum Distortion Energy Theory. Octahedral Shearing Stress Theory. Comparison of the Yielding Theories. Maximum Principal Stress Theory. Mohr's Theory. Coulomb-Mohr Theory. Introductory Fracture Mechanics. Failure Criteria for Metal Fatigue. Fatigue Life under Combined Loading. Impact or Dynamic Loads. Dynamic and Thermal Effects. 5. Bending of Beams. Introduction. Part A-Exact Solutions. Pure Bending of Beams of Symmetrical Cross Section. Pure Bending of Beams of Asymmetrical Cross Section. Bending of a Cantilever of Narrow Section. Bending of a Simply Supported, Narrow Beam. Part B-Approximate Solutions. Elementary Theory of Bending. Bending and Shearing Stresses. Effect of Transverse Normal Stress. Composite Beams. Shear Center. Statically Indeterminate Systems. Energy Method for Deflections. Part C-Curved Beams. Exact Solution. Tangential Stress. Winkler's Theory. Combined Tangential and Normal Stresses. 6. Torsion of Prismatic Bars. Introduction. Elementary Theory of Torsion of Circular Bars. General Solution of the Torsion Problem. Prandtl's Stress Function. Prandtl's Membrane Analogy. Torsion of Thin-Walled Members of Open Cross Section. Torsion of Multiply Connected Thin-Walled Sections. Fluid Flow Analogy and Stress Concentration. Torsion of Restrained Thin-Walled Members of Open Cross Section. Curved Circular Bars: Helical Springs. 7. Numerical Methods. Introduction. Finite Differences. Finite Difference Equations. Curved Boundaries. Boundary Conditions. Finite Element Method. Properties of a Finite Element. Formulation of the Finite Element Method. Triangular Finite Element. Use of Digital Computers. 8. Axisymmetrically Loaded Members. Introduction. Thick-Walled Cylinders. Maximum Tangential Stress. Application of Failure. Bookseller Inventory # ABE_book_new_0130473928

More Information About This Seller | Ask Bookseller a Question