In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: * A unifying probabilistic model for PCA and ICA * Optimization methods for matrix decompositions * Insights into the FastICA algorithm* Unsupervised deep learning * Machine vision and image retrieval * A review of developments in the theory and applications of independent component analysis, and its influence in important areas such as statistical signal processing, pattern recognition and deep learning.* A diverse set of application fields, ranging from machine vision to science policy data.* Contributions from leading researchers in the field.
"synopsis" may belong to another edition of this title.
Ella Bingham received her Doctor of Science (PhD) degree in Computer Science in 2003, and MSc degree in Systems and Operations Research in 1998, both at Helsinki University of Technology. Her main research field has been statistical data analysis. She works at Helsinki Institute for Information Technology HIIT at Aalto University and University of Helsinki. In addition, she is Executive Director of the Foundation for Aalto University Science and Technology. Her professional interests include science policy, research administration, research assessments, and research funding. Samuel Kaski received the DSc (PhD) degree in Computer Science from Helsinki University of Technology, Finland, in 1997. He is currently a Professor at Aalto University, the Director of Helsinki Institute for Information Technology HIIT, Aalto University and University of Helsinki, Finland, and the Director of Finnish Centre of Excellence in Computational Inference Research COIN. He is an action editor of the Journal of Machine Learning Research, and has chaired several conferences including AISTATS 2014. He has published over 200 peer-reviewed papers and supervised 18 PhD theses. His current research interests include statistical machine learning, computational biology and medicine, information visualization, and exploratory information retrieval. Jorma Laaksonen has worked with Prof. Erkki Oja since 1994 and got his Dr. of Science in Technology degree in 1997 from Helsinki University of Technology, Finland. Presently he is a permanent teaching research scientist at the Department of Information and Computer Science, Aalto School of Science where he has instructed eight doctoral theses in the supervision of Prof. Oja. He is an author of 200 scientific journal, conference and edited book papers on pattern recognition, statistical classification, machine learning and neural networks, with Google Scholar h-index 27. His research interests are in content-based multimodal information retrieval and computer vision. Dr. Laaksonen is an Associate Editor of Pattern Recognition Letters, IEEE senior member, and a founding member of the SOM and LVQ Programming Teams and the PicSOM Development Group. Jouko Lampinen obtained his DSc (PhD) degree in Information Technology from Lappeenranta University of Technology, in 1993. He is currently a Professor at Aalto University, Department of Biomedical Engineering and Computational Science, and Vice Dean of School of Science. He is the director of Aalto MSc programme in Life Science Technologies. He has published over 100 peer-reviewed papers and supervised or co-supervised over 20 PhD theses. His current research interests include probabilistic modeling, and data-analysis in systemic neuroscience.
In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining.
Examples of topics which have developed from the advances of ICA, which are covered in the book are:
Key Features Include:
This book is ideal for researchers who want to understand how the theory of ICA has developed and been applied to important areas such as machine learning, pattern recognition, signal processing and data mining.
"About this title" may belong to another edition of this title.
Seller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo è un articolo print on demand. Seller Inventory # ca166ab242329e2fe16a7fd5fb1fa7f0
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
Hardcover. Condition: New. Seller Inventory # 6666-ELS-9780128028063
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 1st edition. 328 pages. 9.50x7.75x1.25 inches. In Stock. This item is printed on demand. Seller Inventory # __0128028068
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 23288425-n
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780128028063_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 23288425-n
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 23288425
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: A unifying probabilistic model for PCA and ICA Optimization methods for matrix decompositions Insights into the FastICA algorithm Unsupervised deep learning Machine vision and image retrieval A review of developments in the theory and applications of independent component analysis, and its influence in important areas such as statistical signal processing, pattern recognition and deep learning A diverse set of application fields, ranging from machine vision to science policy data Contributions from leading researchers in the field 328 pp. Englisch. Seller Inventory # 9780128028063
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 23288425
Quantity: Over 20 available
Seller: Rarewaves.com USA, London, LONDO, United Kingdom
Hardback. Condition: New. In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: A unifying probabilistic model for PCA and ICA Optimization methods for matrix decompositions Insights into the FastICA algorithm Unsupervised deep learning Machine vision and image retrieval. Seller Inventory # LU-9780128028063
Quantity: Over 20 available