Energy Optimization in Process Systems and Fuel Cells (Revised) - Softcover

Sieniutycz, Stanislaw; Jezowski, Jacek

 
9780080975542: Energy Optimization in Process Systems and Fuel Cells (Revised)

This specific ISBN edition is currently not available.

Synopsis

"Energy Optimization in Process Systems and Fuel Cells, Second Edition" covers the optimization and integration of energy systems, with a particular focus on fuel cell technology. With rising energy prices, imminent energy shortages, and increasing environmental impacts of energy production, energy optimization and systems integration is critically important. The book applies thermodynamics, kinetics and economics to study the effect of equipment size, environmental parameters, and economic factors on optimal power production and heat integration. Author Stanislaw Sieniutycz, highly recognized for his expertise and teaching, shows how costs can be substantially reduced, particularly in utilities common in the chemical industry.

This second edition contains substantial revisions, with particular focus on the rapid progress in the field of fuel cells, related energy theory, and recent advances in the optimization and control of fuel cell systems.
New information on fuel cell theory, combined with the theory of flow energy systems, broadens the scope and usefulness of the bookDiscusses engineering applications including power generation, resource upgrading, radiation conversion, and chemical transformation in static and dynamic systemsContains practical applications of optimization methods that help solve the problems of power maximization and optimal use of energy and resources in chemical, mechanical, and environmental engineering

"synopsis" may belong to another edition of this title.

Review

""Polish chemical and process engineers Seinuitycz and Jezowski explain how to simulate and optimize various energy processes by applying optimization approaches found in second law analysis, finite time thermodynamics, entropy generation minimization, exergo-economics, and system engineering The book can be used as a core or supplemental textbook in a range of science and engineering courses on energy at the graduate or undergraduate level."--""Reference & Research Book News, " October 2013"

From the Back Cover

Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors.

Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs.

Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration.

Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios.

· Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory
· Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems
· Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9780080982212: Energy Optimization in Process Systems and Fuel Cells

Featured Edition

ISBN 10:  0080982212 ISBN 13:  9780080982212
Publisher: Elsevier, 2013
Hardcover