Search preferences
Skip to main search results

Search filters

Product Type

  • All Product Types 
  • Books (2)
  • Magazines & Periodicals (No further results match this refinement)
  • Comics (No further results match this refinement)
  • Sheet Music (No further results match this refinement)
  • Art, Prints & Posters (No further results match this refinement)
  • Photographs (No further results match this refinement)
  • Maps (No further results match this refinement)
  • Manuscripts & Paper Collectibles (No further results match this refinement)

Condition Learn more

  • New (2)
  • As New, Fine or Near Fine (No further results match this refinement)
  • Very Good or Good (No further results match this refinement)
  • Fair or Poor (No further results match this refinement)
  • As Described (No further results match this refinement)

Collectible Attributes

Language (1)

Price

  • Any Price 
  • Under £ 20 (No further results match this refinement)
  • £ 20 to £ 35 (No further results match this refinement)
  • Over £ 35 
Custom price range (£)

Free Shipping

  • Free Shipping to United Kingdom (No further results match this refinement)

Seller Location

  • Nada Lavra¿

    Published by Springer International Publishing, 2022

    ISBN 10: 3030688194 ISBN 13: 9783030688196

    Language: English

    Seller: AHA-BUCH GmbH, Einbeck, Germany

    Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

    Contact seller

    £ 12.15 shipping from Germany to United Kingdom

    Destination, rates & speeds

    Quantity: 1 available

    Add to basket

    Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.

  • Nada Lavra¿

    Published by Springer International Publishing, 2021

    ISBN 10: 303068816X ISBN 13: 9783030688165

    Language: English

    Seller: AHA-BUCH GmbH, Einbeck, Germany

    Seller rating 5 out of 5 stars 5-star rating, Learn more about seller ratings

    Contact seller

    £ 12.15 shipping from Germany to United Kingdom

    Destination, rates & speeds

    Quantity: 1 available

    Add to basket

    Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.