Stock Image

Process-structure-property relationship of polymer-fullerene bulk heterojunction films for organic solar cells

Benjamin Schmidt-Hansberg

Published by Cuvillier Verlag Mai 2012, 2012
ISBN 10: 3954040735 / ISBN 13: 9783954040735
New / Taschenbuch / Quantity Available: 1
From Agrios-Buch (Bergisch Gladbach, Germany)
Available From More Booksellers
View all  copies of this book
Add to basket
List Price:
Price: £ 51.41
Convert Currency
Shipping: £ 15.25
From Germany to U.S.A.
Destination, Rates & Speeds

Save for Later

About the Book

Bibliographic Details

Title: Process-structure-property relationship of ...

Publisher: Cuvillier Verlag Mai 2012

Publication Date: 2012

Binding: Taschenbuch

Book Condition: Neu


Neuware - Photovoltaic (PV) is attracting increasing interest as an important contribution to renewable energy supply. Organic photovoltaic (OPV) is a comparable young PV technology with a great potential towards low cost solar power. This is due to the intrinsic advantage of the incorporated organic semiconductors which are soluble. Solution processing allows high throughput coating and printing processes. Hence, energy intensive high temperature and vacuum steps can be avoided which reduces the fabrication costs and keeps energy payback times low. The performance of organic solar cells strongly depends on the structure of the solution cast photoactive layer which comprises a polymer-fullerene blend. The blend structure evolves during the film drying step which has been studied in this thesis.Starting point of this work was the hypothesis that drying process parameters are suitable for systematically tuning the structure formation during drying of solution cast polymer-fullerene films in order to generate optimized structures with improved photovoltaic performance. For the evaluation of this hypothesis the structure formation of the polymer-fullerene system Poly(3-hexylthiophene-2,5-diyl):[6,6]-Phenyl C61-butyric acid methyl ester (P3HT:PCBM) was investigated incorporating i) thin film drying kinetics, ii) phase behavior of polymer-fullerene solutions, iii) structure formation and iv) the drying process-structure-property relationship of solar cells. The generality of the obtained results has been studied in comparison with the behavior of Poly{[4,40-bis(2-ethylhexyl)dithieno(3,2-b;20,30-d)silole]-2,6-diyl-alt-(2,1,3-benzothidiazole)-4,7-diyl} (PSBTBT).i) Within this thesis a dedicated coating and drying setup was developed which afforded precisely defined coating and drying process conditions as prerequisite for all obtained results. For the first time, the drying behavior of finally a few hundred nanometer thin films could be investigated at five measurement positions with laser reflectometry simultaneously. This allowed the elaboration of a spatially resolved numerical thin film drying model. ii) In conjunction with the measurement and simulation of the evolution of film composition it was required to determine important instants of phase transitions such as solubility limits. Therefore the binodal region of P3HT solutions has been determined in the temperature range of 0°C-60°C. Within the unstable region P3HT solutions phase separate into a sol and a gel phase. The fullerene PCBM exhibits only a single solubility limit. iii) In order to correlate the expected phase transitions according to the phase diagrams with the real structure formation, the above mentioned coating and drying setup was combined with synchrotron based in situ grazing incidence X-ray diffraction (GIXD) measurements. This gave unique insights into the mechanisms and dynamics of polymer-fullerene blend crystallization. After reaching P3HT solubility the crystallization proceeded with well-oriented interface-induced P3HT nucleation followed by P3HT crystal growth with increasing orientation distribution of the crystallites and PCBM aggregation in the final drying period. Furthermore strong polymer-fullerene interaction forces could be derived. By increasing the PCBM fraction it could be shown for the 1:2 P3HT:PCBM ratio that PCBM molecules brake the (020) p-p-stacking of P3HT lamellae which signifies a dramatic loss of hole mobility and consequently reduced device performance. It is further notable that increasing drying temperatures reduce the amount of (020) p-p-stacked P3HT molecules but lead to an increased amount of P3HT (100) crystallinity. Hence, drying temperature determines the preferred direction of crystal growth. iv) Besides a finer degree of phase separation, reduced drying temperatures also cause a higher amount of p-p-stacked polymers, longer effective polymer conjugation length, increased amount of vertical charge transport pathways and a. Bookseller Inventory # 9783954040735

Bookseller & Payment Information

Payment Methods

This bookseller accepts the following methods of payment:

  • American Express
  • Bank/Wire Transfer
  • Check
  • Invoice
  • MasterCard
  • PayPal
  • Visa

[Search this Seller's Books]

[List this Seller's Books]

[Ask Bookseller a Question]

Bookseller: Agrios-Buch
Address: Bergisch Gladbach, Germany

AbeBooks Bookseller Since: 11 January 2012
Bookseller Rating: 5-star rating

Terms of Sale:

Allgemeine Geschäftsbedingungen (

der Firma Agrios Buch- und Medienversand UG e.K. ,Geschäftsführer Ludwig Meier, De-Gasperi-Str. 8, 51469 Bergisch Gladbach nachstehend als Verkäufer bezeichnet.

§ 1 Allgemeines, Begriffsbestimmungen

(1) Der Verkäufer bietet unter dem Nutzernamen Agrios Buch unter der Plattform insbesondere Bücher an. Die folgenden Allgemeinen Geschäftsbedingungen (AGB) gelten für die Geschäftsbeziehung zwischen dem Verkäufer und dem Kunden in ihrer zum Ze...

[More Information]

Shipping Terms:

Der Versand ins Ausland findet IMMER mit DHL statt. Auch nach Österreich verschicken wir nur mit DHL! Daher Standardversand == Luftpost!

Detailed Seller Information