This book takes a balanced approach between theoretical understanding and real time applications. All topics show how to explore, build, evaluate and optimize deep learning models with computer vision. Deep learning is integrated with computer vision to enhance the performance of image classification with localization, object detection, object recognition, object segmentation, image style transfer, image colorization, image reconstruction, image super-resolution, image synthesis, motion detection, pose estimation, semantic segmentation in biomedical field. Huge number of efficient approaches/applications and models support medical decisions in the fields of cardiology, dermatology, and radiology. The content of book elaborates deep learning models such as convolution neural networks, deep learning, generative adversarial network, long short-term memory networks (LSTM), autoencoder (AE), restricted Boltzmann machine (RBM), self-organizing map (SOM), deep belief network (DBN), etc.
"synopsis" may belong to another edition of this title.
Dr. Uma N. Dulhare is currently working as a Professor & Head Computer Science &Artificial Intelligence Department, MuffaKham Jah College of Engineering & Technology, Hyderabad, India. She has more than 20 years of teaching experience. She received her Ph.D. degree in Computer Science from Osmania University, Hyderabad. Her research interests include Data Mining, Big Data Analytics, and Machine Learning, IoT, Evolutionary Computing, Biomedical Image Processing. She has published more than 40 research papers in prestigious National, International Journals & book chapters. She is a member of the editorial board for various National and International journals in the field of Computer Science and program committee member/reviewer for various International conferences/Journals such as Elsevier, Springer, MDPI, Multimedia Tools & Applications & also chaired the sessions at various International conferences.
Essam H. Houssein (Member, IEEE) received Ph.D. degree in computer science, in 2012. He is currently a Professor of Artificial Intelligence at the Faculty of Computers and Information, Minia University, Minia, Egypt. He is the founder and chair of the Artificial Intelligence Research (AIR) Group, Egypt. He is selected as a Highly Cited Researcher 2023, in 2024 Edition of the Ranking of Top Scientists in the field of Computer Science. He has published more than 240 scientific research articles in prestigious international journals. His research interests include Meta-heuristics Optimization Algorithms, Artificial Intelligence, WSN, Bioinformatics, Internet of Things, Artificial Intelligence, Image Processing, and Data Mining. He serves as a reviewer for more than 120 journals, such as Elsevier, Springer, and IEEE.
This book takes a balanced approach between theoretical understanding and real time applications. All topics show how to explore, build, evaluate and optimize deep learning models with computer vision. Deep learning is integrated with computer vision to enhance the performance of image classification with localization, object detection, object recognition, object segmentation, image style transfer, image colorization, image reconstruction, image super-resolution, image synthesis, motion detection, pose estimation, semantic segmentation in biomedical field. Huge number of efficient approaches/applications and models support medical decisions in the fields of cardiology, dermatology, and radiology. The content of book elaborates deep learning models such as convolution neural networks, deep learning, generative adversarial network, long short-term memory networks (LSTM), autoencoder (AE), restricted Boltzmann machine (RBM), self-organizing map (SOM), deep belief network (DBN), etc.
"About this title" may belong to another edition of this title.
Seller: CitiRetail, Stevenage, United Kingdom
Hardcover. Condition: new. Hardcover. This book takes a balanced approach between theoretical understanding and real time applications. All topics show how to explore, build, evaluate and optimize deep learning models with computer vision. Deep learning is integrated with computer vision to enhance the performance of image classification with localization, object detection, object recognition, object segmentation, image style transfer, image colorization, image reconstruction, image super-resolution, image synthesis, motion detection, pose estimation, semantic segmentation in biomedical field. Huge number of efficient approaches/applications and models support medical decisions in the fields of cardiology, dermatology, and radiology. The content of book elaborates deep learning models such as convolution neural networks, deep learning, generative adversarial network, long short-term memory networks (LSTM), autoencoder (AE), restricted Boltzmann machine (RBM), self-organizing map (SOM), deep belief network (DBN), etc. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9789819612840
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Seller Inventory # 1966143174
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9789819612840_new
Quantity: Over 20 available
Seller: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condition: new. Hardcover. This book takes a balanced approach between theoretical understanding and real time applications. All topics show how to explore, build, evaluate and optimize deep learning models with computer vision. Deep learning is integrated with computer vision to enhance the performance of image classification with localization, object detection, object recognition, object segmentation, image style transfer, image colorization, image reconstruction, image super-resolution, image synthesis, motion detection, pose estimation, semantic segmentation in biomedical field. Huge number of efficient approaches/applications and models support medical decisions in the fields of cardiology, dermatology, and radiology. The content of book elaborates deep learning models such as convolution neural networks, deep learning, generative adversarial network, long short-term memory networks (LSTM), autoencoder (AE), restricted Boltzmann machine (RBM), self-organizing map (SOM), deep belief network (DBN), etc. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Seller Inventory # 9789819612840
Quantity: 1 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book takes a balanced approach between theoretical understanding and real time applications. All topics show how to explore, build, evaluate and optimize deep learning models with computer vision. Deep learning is integrated with computer vision to enhance the performance of image classification with localization, object detection, object recognition, object segmentation, image style transfer, image colorization, image reconstruction, image super-resolution, image synthesis, motion detection, pose estimation, semantic segmentation in biomedical field. Huge number of efficient approaches/applications and models support medical decisions in the fields of cardiology, dermatology, and radiology. The content of book elaborates deep learning models such as convolution neural networks, deep learning, generative adversarial network, long short-term memory networks (LSTM), autoencoder (AE), restricted Boltzmann machine (RBM), self-organizing map (SOM), deep belief network (DBN), etc. 216 pp. Englisch. Seller Inventory # 9789819612840
Quantity: 2 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9789819612840
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book takes a balanced approach between theoretical understanding and real time applications. All topics show how to explore, build, evaluate and optimize deep learning models with computer vision. Deep learning is integrated with computer vision to enhance the performance of image classification with localization, object detection, object recognition, object segmentation, image style transfer, image colorization, image reconstruction, image super-resolution, image synthesis, motion detection, pose estimation, semantic segmentation in biomedical field. Huge number of efficient approaches/applications and models support medical decisions in the fields of cardiology, dermatology, and radiology. The content of book elaborates deep learning models such as convolution neural networks, deep learning, generative adversarial network, long short-term memory networks (LSTM), autoencoder (AE), restricted Boltzmann machine (RBM), self-organizing map (SOM), deep belief network (DBN), etc. Seller Inventory # 9789819612840
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book takes a balanced approach between theoretical understanding and real time applications. All topics show how to explore, build, evaluate and optimize deep learning models with computer vision. Deep learning is integrated with computer vision to enhance the performance of image classification with localization, object detection, object recognition, object segmentation, image style transfer, image colorization, image reconstruction, image super-resolution, image synthesis, motion detection, pose estimation, semantic segmentation in biomedical field. Huge number of efficient approaches/applications and models support medical decisions in the fields of cardiology, dermatology, and radiology. The content of book elaborates deep learning models such as convolution neural networks, deep learning, generative adversarial network, long short-term memory networks (LSTM), autoencoder (AE), restricted Boltzmann machine (RBM), self-organizing map (SOM), deep belief network (DBN), etc.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 232 pp. Englisch. Seller Inventory # 9789819612840
Quantity: 1 available
Seller: Grand Eagle Retail, Fairfield, OH, U.S.A.
Hardcover. Condition: new. Hardcover. This book takes a balanced approach between theoretical understanding and real time applications. All topics show how to explore, build, evaluate and optimize deep learning models with computer vision. Deep learning is integrated with computer vision to enhance the performance of image classification with localization, object detection, object recognition, object segmentation, image style transfer, image colorization, image reconstruction, image super-resolution, image synthesis, motion detection, pose estimation, semantic segmentation in biomedical field. Huge number of efficient approaches/applications and models support medical decisions in the fields of cardiology, dermatology, and radiology. The content of book elaborates deep learning models such as convolution neural networks, deep learning, generative adversarial network, long short-term memory networks (LSTM), autoencoder (AE), restricted Boltzmann machine (RBM), self-organizing map (SOM), deep belief network (DBN), etc. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9789819612840
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26404298703
Quantity: 4 available