Items related to Relative Equilibria of the Curved N-Body Problem: 1...

Relative Equilibria of the Curved N-Body Problem: 1 (Atlantis Studies in Dynamical Systems, 1) - Hardcover

 
9789491216671: Relative Equilibria of the Curved N-Body Problem: 1 (Atlantis Studies in Dynamical Systems, 1)
View all copies of this ISBN edition:
 
 
The guiding light of this monograph is a question easy to understand but difficult to answer: {What is the shape of the universe? In other words, how do we measure the shortest distance between two points of the physical space? Should we follow a straight line, as on a flat table, fly along a circle, as between Paris and New York, or take some other path, and if so, what would that path look like? If you accept that the model proposed here, which assumes a gravitational law extended to a universe of constant curvature, is a good approximation of the physical reality (and I will later outline a few arguments in this direction), then we can answer the above question for distances comparable to those of our solar system. More precisely, this monograph provides a mathematical proof that, for distances of the order of 10 AU, space is Euclidean. This result is, of course, not surprising for such small cosmic scales. Physicists take the flatness of space for granted in regions of that size. But it is good to finally have a mathematical confirmation in this sense. Our main goals, however, are mathematical. We will shed some light on the dynamics of N point masses that move in spaces of non-zero constant curvature according to an attraction law that naturally extends classical Newtonian gravitation beyond the flat (Euclidean) space. This extension is given by the cotangent potential, proposed by the German mathematician Ernest Schering in 1870. He was the first to obtain this analytic expression of a law suggested decades earlier for a 2-body problem in hyperbolic space by Janos Bolyai and, independently, by Nikolai Lobachevsky. As Newton's idea of gravitation was to introduce a force inversely proportional to the area of a sphere the same radius as the Euclidean distance between the bodies, Bolyai and Lobachevsky thought of a similar definition using the hyperbolic distance in hyperbolic space. The recent generalization we gave to the cotangent potential to any number N of bodies, led to the discovery of some interesting properties. This new research reveals certain connections among at least five branches of mathematics: classical dynamics, non-Euclidean geometry, geometric topology, Lie groups, and the theory of polytopes.

"synopsis" may belong to another edition of this title.

Review:

From the reviews:

“The book is divided into 5 parts with several chapters and sections in each. ... The book is clear, well written, interesting and easy to read. ... The book is an invitation to more research on this topic and it is a nice source of new problems, particularly for people working in celestial mechanics, dynamical systems, numerical analysis and geometric mechanics. I enjoyed reading it.” (Ernesto Pérez-Chavela, Mathematical Reviews, June, 2013)

"About this title" may belong to another edition of this title.

  • PublisherAtlantis Press
  • Publication date2012
  • ISBN 10 9491216678
  • ISBN 13 9789491216671
  • BindingHardcover
  • Number of pages157

Other Popular Editions of the Same Title

9780821891360: Relative Equilibria in the 3-Dimensional Curved n-Body Problem (Memoirs of the American Mathematical Society)

Featured Edition

ISBN 10:  0821891367 ISBN 13:  9780821891360
Publisher: American Mathematical Society, 2014
Softcover

  • 9789462390386: Relative Equilibria of the Curved N-Body Problem: 1 (Atlantis Studies in Dynamical Systems, 1)

    Atlant..., 2014
    Softcover

Top Search Results from the AbeBooks Marketplace

Seller Image

Diacu, Florin
Published by Atlantis Press (2012)
ISBN 10: 9491216678 ISBN 13: 9789491216671
New Hardcover Quantity: 10
Seller:
booksXpress
(Bayonne, NJ, U.S.A.)

Book Description Hardcover. Condition: new. Seller Inventory # 9789491216671

More information about this seller | Contact seller

Buy New
£ 102.64
Convert currency

Add to Basket

Shipping: FREE
Within U.S.A.
Destination, rates & speeds
Stock Image

Florin Diacu
Published by Atlantis Press (2012)
ISBN 10: 9491216678 ISBN 13: 9789491216671
New Hardcover Quantity: > 20
Print on Demand
Seller:
PBShop.store US
(Wood Dale, IL, U.S.A.)

Book Description HRD. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L1-9789491216671

More information about this seller | Contact seller

Buy New
£ 106.39
Convert currency

Add to Basket

Shipping: FREE
Within U.S.A.
Destination, rates & speeds
Seller Image

Florin Diacu
Published by Atlantis Press Aug 2012 (2012)
ISBN 10: 9491216678 ISBN 13: 9789491216671
New Buch Quantity: 2
Print on Demand
Seller:
BuchWeltWeit Ludwig Meier e.K.
(Bergisch Gladbach, Germany)

Book Description Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The guiding light of this monograph is a question easy to understand but difficult to answer: {What is the shape of the universe In other words, how do we measure the shortest distance between two points of the physical space Should we follow a straight line, as on a flat table, fly along a circle, as between Paris and New York, or take some other path, and if so, what would that path look like If you accept that the model proposed here, which assumes a gravitational law extended to a universe of constant curvature, is a good approximation of the physical reality (and I will later outline a few arguments in this direction), then we can answer the above question for distances comparable to those of our solar system. More precisely, this monograph provides a mathematical proof that, for distances of the order of 10 AU, space is Euclidean. This result is, of course, not surprising for such small cosmic scales. Physicists take the flatness of space for granted in regions of that size. But it is good to finally have a mathematical confirmation in this sense.Our main goals, however, are mathematical. We will shed some light on the dynamics of N point masses that move in spaces of non-zero constant curvature according to an attraction law that naturally extends classical Newtonian gravitation beyond the flat (Euclidean) space. This extension is given by the cotangent potential, proposed by the German mathematician Ernest Schering in 1870. He was the first to obtain this analytic expression of a law suggested decades earlier for a 2-body problem in hyperbolic space by Janos Bolyai and, independently, by Nikolai Lobachevsky. As Newton's idea of gravitation was to introduce a force inversely proportional to the area of a sphere the same radius as the Euclidean distance between the bodies, Bolyai and Lobachevsky thought of a similar definition using the hyperbolic distance in hyperbolic space. The recent generalization we gave to the cotangent potential to any number N of bodies, led to the discovery of some interesting properties. This new research reveals certain connections among at least five branches of mathematics: classical dynamics, non-Euclidean geometry, geometric topology, Lie groups, and the theory of polytopes. 160 pp. Englisch. Seller Inventory # 9789491216671

More information about this seller | Contact seller

Buy New
£ 89.60
Convert currency

Add to Basket

Shipping: £ 19.69
From Germany to U.S.A.
Destination, rates & speeds
Stock Image

Diacu, Florin
Published by Atlantis Press (2012)
ISBN 10: 9491216678 ISBN 13: 9789491216671
New Hardcover Quantity: 18
Seller:
Lucky's Textbooks
(Dallas, TX, U.S.A.)

Book Description Condition: New. Seller Inventory # ABLIING23Apr0412070063544

More information about this seller | Contact seller

Buy New
£ 112.52
Convert currency

Add to Basket

Shipping: £ 3.21
Within U.S.A.
Destination, rates & speeds
Stock Image

Florin Diacu
Published by Atlantis Press (2012)
ISBN 10: 9491216678 ISBN 13: 9789491216671
New Hardcover Quantity: > 20
Print on Demand
Seller:
PBShop.store UK
(Fairford, GLOS, United Kingdom)

Book Description HRD. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L1-9789491216671

More information about this seller | Contact seller

Buy New
£ 92.49
Convert currency

Add to Basket

Shipping: £ 25
From United Kingdom to U.S.A.
Destination, rates & speeds
Seller Image

Florin Diacu
Published by Atlantis Press (2012)
ISBN 10: 9491216678 ISBN 13: 9789491216671
New Hardcover Quantity: > 20
Print on Demand
Seller:
moluna
(Greven, Germany)

Book Description Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Understanding of the geometric shape of the universe New mathematical results Bridges laid between several fields of mathematics Opening of new directions of research Clearly exposed materialThe guiding light of this m. Seller Inventory # 5839637

More information about this seller | Contact seller

Buy New
£ 77.47
Convert currency

Add to Basket

Shipping: £ 41.93
From Germany to U.S.A.
Destination, rates & speeds
Seller Image

Florin Diacu
Published by Atlantis Press (2012)
ISBN 10: 9491216678 ISBN 13: 9789491216671
New Hardcover Quantity: 1
Print on Demand
Seller:
AHA-BUCH GmbH
(Einbeck, Germany)

Book Description Buch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The guiding light of this monograph is a question easy to understand but difficult to answer: {What is the shape of the universe In other words, how do we measure the shortest distance between two points of the physical space Should we follow a straight line, as on a flat table, fly along a circle, as between Paris and New York, or take some other path, and if so, what would that path look like If you accept that the model proposed here, which assumes a gravitational law extended to a universe of constant curvature, is a good approximation of the physical reality (and I will later outline a few arguments in this direction), then we can answer the above question for distances comparable to those of our solar system. More precisely, this monograph provides a mathematical proof that, for distances of the order of 10 AU, space is Euclidean. This result is, of course, not surprising for such small cosmic scales. Physicists take the flatness of space for granted in regions of that size. But it is good to finally have a mathematical confirmation in this sense.Our main goals, however, are mathematical. We will shed some light on the dynamics of N point masses that move in spaces of non-zero constant curvature according to an attraction law that naturally extends classical Newtonian gravitation beyond the flat (Euclidean) space. This extension is given by the cotangent potential, proposed by the German mathematician Ernest Schering in 1870. He was the first to obtain this analytic expression of a law suggested decades earlier for a 2-body problem in hyperbolic space by Janos Bolyai and, independently, by Nikolai Lobachevsky. As Newton's idea of gravitation was to introduce a force inversely proportional to the area of a sphere the same radius as the Euclidean distance between the bodies, Bolyai and Lobachevsky thought of a similar definition using the hyperbolic distance in hyperbolic space. The recent generalization we gave to the cotangent potential to any number N ofbodies, led to the discovery of some interesting properties. This new research reveals certain connections among at least five branches of mathematics: classical dynamics, non-Euclidean geometry, geometric topology, Lie groups, and the theory of polytopes. Seller Inventory # 9789491216671

More information about this seller | Contact seller

Buy New
£ 91.79
Convert currency

Add to Basket

Shipping: £ 28.24
From Germany to U.S.A.
Destination, rates & speeds