Silicon-Germanium Heterojunction Bipolar Transistors (SiGe HBTs) are perfectly suited for high-speed electronics. Since the fabrication costs per design cycle are rapidly increasing with progressing frequency and complexity of the systems, accurate compact models are essential in order to enable robust circuit design. This thesis focuses on selected important physical effects in advanced SiGe HBTs, which have been either insufficiently modeled or completely missing in conventional compact models. New compact model equations for the transfer current were derived and successfully applied to a large set of different technologies. Hereby, the "Generalized Integral Charge Control Relation" was used as a foundation. A physics-based model utilizing small-signal parameters obtained from measurements is derived for modeling the current dependent collector charge. A brief chapter about substrate effects in bipolar transistors comprises the derivation of a compact model for the bias-dependent substrate resistance as well as a proper partitioning of the substrate capacitance. New extraction methods for compact model parameters are introduced and the application of existing methods to advanced processes is discussed. The derived joint extraction method for the emitter and thermal resistance as well as a scalable model for the transfer current have been successfully applied to experimental data of fast HBTs. The derived model equations were applied to a selected very advanced SiGe HBT process developed by IHP. Highly accurate models for DC- and small-signal as well as for large-signal characteristics are presented.
"synopsis" may belong to another edition of this title.
£ 7.73 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut | Seiten: 232 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 26226727/2
Quantity: 2 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783959080286
Quantity: 10 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783959080286_new
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9783959080286
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Silicon-Germanium Heterojunction Bipolar Transistors (SiGe HBTs) are perfectly suited for high-speed electronics. Since the fabrication costs per design cycle are rapidly increasing with progressing frequency and complexity of the systems, accurate compact models are essential in order to enable robust circuit design. This thesis focuses on selected important physical effects in advanced SiGe HBTs, which have been either insufficiently modeled or completely missing in conventional compact models. New compact model equations for the transfer current were derived and successfully applied to a large set of different technologies. Hereby, the 'Generalized Integral Charge Control Relation' was used as a foundation. A physics-based model utilizing small-signal parameters obtained from measurements is derived for modeling the current dependent collector charge. A brief chapter about substrate effects in bipolar transistors comprises the derivation of a compact model for the bias-dependent substrate resistance as well as a proper partitioning of the substrate capacitance.New extraction methods for compact model parameters are introduced and the application of existing methods to advanced processes is discussed. The derived joint extraction method for the emitter and thermal resistance as well as a scalable model for the transfer current have been successfully applied to experimental data of fast HBTs. The derived model equations were applied to a selected very advanced SiGe HBT process developed by IHP. Highly accurate models for DC- and small-signal as well as for large-signal characteristics are presented. 232 pp. Englisch. Seller Inventory # 9783959080286
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Silicon-Germanium Heterojunction Bipolar Transistors (SiGe HBTs) are perfectly suited for high-speed electronics. Since the fabrication costs per design cycle are rapidly increasing with progressing frequency and complexity of the systems, accurate compact models are essential in order to enable robust circuit design. This thesis focuses on selected important physical effects in advanced SiGe HBTs, which have been either insufficiently modeled or completely missing in conventional compact models. New compact model equations for the transfer current were derived and successfully applied to a large set of different technologies. Hereby, the 'Generalized Integral Charge Control Relation' was used as a foundation. A physics-based model utilizing small-signal parameters obtained from measurements is derived for modeling the current dependent collector charge. A brief chapter about substrate effects in bipolar transistors comprises the derivation of a compact model for the bias-dependent substrate resistance as well as a proper partitioning of the substrate capacitance.New extraction methods for compact model parameters are introduced and the application of existing methods to advanced processes is discussed. The derived joint extraction method for the emitter and thermal resistance as well as a scalable model for the transfer current have been successfully applied to experimental data of fast HBTs. The derived model equations were applied to a selected very advanced SiGe HBT process developed by IHP. Highly accurate models for DC- and small-signal as well as for large-signal characteristics are presented. Seller Inventory # 9783959080286
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783959080286
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 234. Seller Inventory # 388899596
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 234. Seller Inventory # 26391748819
Quantity: 4 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Silicon-Germanium Heterojunction Bipolar Transistors (SiGe HBTs) are perfectly suited for high-speed electronics. Since the fabrication costs per design cycle are rapidly increasing with progressing frequency and complexity of the systems, accurate compact . Seller Inventory # 449802205
Quantity: Over 20 available