Biosensors combine the power of microelectronics with the selectivity and sensitivity of biological components such as whole cells, organelles or biomolecules, e.g. antibodies, receptors, enzymes and nucleic acids. They are used to detect individual substances or groups of substances in the environment, such as industrial emissions that originate, for instance, from the textile, cellulose and pharmceutical industry as well as from agricultural activities. The biosensor approach is expected not only to provide a significant contribution to measurement technology but also a basis for competent political decisions. Up to now disturbances in lakes and rivers are detected more or less by chance. Essentially, only substances that can be assayed by traditional physico-chemical techniques are found. However, the pollution peak has usually already passed by the time the results become known and acquisition of evidence for the identification of the responsible party is hardly possible after the event. Therefore fast and continuous measurement systems such as biosensors are required to provide inexpensive and cost effective event-related sampling of water thus providing for the preservation of evidence. Biosensors can detect biological effects such as genotoxicity, immunotoxicity and endocrine responses. The sequence of these signals and especially the peak values provide valuable indicators for water protection and facilitate the elaboration of new strategies and concepts within water management. Of major importance is the knowledge of distribution of warning signals within space and time from water ecosystems. Only then can the "health status" of water be recognized sufficiently early.
"synopsis" may belong to another edition of this title.
This book reflects the current knowledge and trends in the field of biosensors for environmental monitoring. Biosensors combine the power of microelectronics with the selectivity and sensitivity of biological components to detect individual substances or groups of substances in the environment. Biosensors can also be used for recognizing biological effects such as genotoxicity, immunotoxicity and endocrine responses. For this purpose, components of biological origin such as microorganisms, enzymes, receptors or specific nucleic acid sequences are applied for the recognition and combined with a transducer system to provide toxicologic or pharmacologic data within seconds. This approach is expected not only to provide a significant contribution to measurement technology but also a basis for competent political decisions.
"About this title" may belong to another edition of this title.
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Apr0316110064469
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Biosensors combine the power of microelectronics with the selectivity and sensitivity of biological components such as whole cells, organelles or biomolecules, e.g. antibodies, receptors, enzymes and nucleic acids. They are used to detect individual substances or groups of substances in the environment, such as industrial emissions that originate, for instance, from the textile, cellulose and pharmceutical industry as well as from agricultural activities. The biosensor approach is expected not only to provide a significant contribution to measurement technology but also a basis for competent political decisions. Up to now disturbances in lakes and rivers are detected more or less by chance. Essentially, only substances that can be assayed by traditional physico-chemical techniques are found. However, the pollution peak has usually already passed by the time the results become known and acquisition of evidence for the identification of the responsible party is hardly possible after the event. Therefore fast and continuous measurement systems such as biosensors are required to provide inexpensive and cost effective event-related sampling of water thus providing for the preservation of evidence. Biosensors can detect biological effects such as genotoxicity, immunotoxicity and endocrine responses. The sequence of these signals and especially the peak values provide valuable indicators for water protection and facilitate the elaboration of new strategies and concepts within water management. Of major importance is the knowledge of distribution of warning signals within space and time from water ecosystems. Only then can the 'health status' of water be recognized sufficiently early. 284 pp. Englisch. Seller Inventory # 9783815435403
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 284. Seller Inventory # 26127767468
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 284 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Seller Inventory # 132787315
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 284. Seller Inventory # 18127767462
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book reflects the current knowledge and trends in the field of biosensors for environmental monitoring. Biosensors combine the power of microelectronics with the selectivity and sensitivity of biological components to detect individual substances or g. Seller Inventory # 5332676
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783815435403_new
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783815435403
Quantity: 10 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Biosensors combine the power of microelectronics with the selectivity and sensitivity of biological components such as whole cells, organelles or biomolecules, e.g. antibodies, receptors, enzymes and nucleic acids. They are used to detect individual substances or groups of substances in the environment, such as industrial emissions that originate, for instance, from the textile, cellulose and pharmceutical industry as well as from agricultural activities. The biosensor approach is expected not only to provide a significant contribution to measurement technology but also a basis for competent political decisions. Up to now disturbances in lakes and rivers are detected more or less by chance. Essentially, only substances that can be assayed by traditional physico-chemical techniques are found. However, the pollution peak has usually already passed by the time the results become known and acquisition of evidence for the identification of the responsible party is hardly possible after the event. Therefore fast and continuous measurement systems such as biosensors are required to provide inexpensive and cost effective event-related sampling of water thus providing for the preservation of evidence. Biosensors can detect biological effects such as genotoxicity, immunotoxicity and endocrine responses. The sequence of these signals and especially the peak values provide valuable indicators for water protection and facilitate the elaboration of new strategies and concepts within water management. Of major importance is the knowledge of distribution of warning signals within space and time from water ecosystems. Only then can the 'health status' of water be recognized sufficiently early.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 284 pp. Englisch. Seller Inventory # 9783815435403
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Biosensors combine the power of microelectronics with the selectivity and sensitivity of biological components such as whole cells, organelles or biomolecules, e.g. antibodies, receptors, enzymes and nucleic acids. They are used to detect individual substances or groups of substances in the environment, such as industrial emissions that originate, for instance, from the textile, cellulose and pharmceutical industry as well as from agricultural activities. The biosensor approach is expected not only to provide a significant contribution to measurement technology but also a basis for competent political decisions. Up to now disturbances in lakes and rivers are detected more or less by chance. Essentially, only substances that can be assayed by traditional physico-chemical techniques are found. However, the pollution peak has usually already passed by the time the results become known and acquisition of evidence for the identification of the responsible party is hardly possible after the event. Therefore fast and continuous measurement systems such as biosensors are required to provide inexpensive and cost effective event-related sampling of water thus providing for the preservation of evidence. Biosensors can detect biological effects such as genotoxicity, immunotoxicity and endocrine responses. The sequence of these signals and especially the peak values provide valuable indicators for water protection and facilitate the elaboration of new strategies and concepts within water management. Of major importance is the knowledge of distribution of warning signals within space and time from water ecosystems. Only then can the 'health status' of water be recognized sufficiently early. Seller Inventory # 9783815435403