Reconstructive Integral Geometry: 98 (Monographs in Mathematics, 98) - Hardcover

Palamodov, Victor

 
9783764371296: Reconstructive Integral Geometry: 98 (Monographs in Mathematics, 98)

Synopsis

One hundred years ago (1904) Hermann Minkowski [58] posed a problem: to re­ 2 construct an even function I on the sphere 8 from knowledge of the integrals MI (C) = fc Ids over big circles C. Paul Funk found an explicit reconstruction formula for I from data of big circle integrals. Johann Radon studied a similar problem for the Eu­ clidean plane and space. The interest in reconstruction problems like Minkowski­ Funk's and Radon's has grown tremendously in the last four decades, stimulated by the spectrum of new modalities of image reconstruction. These are X-ray, MRI, gamma and positron radiography, ultrasound, seismic tomography, electron mi­ croscopy, synthetic radar imaging and others. The physical principles of these methods are very different, however their mathematical models and solution meth­ ods have very much in common. The umbrella name reconstructive integral geom­ etryl is used to specify the variety of these problems and methods. The objective of this book is to present in a uniform way the scope of well­ known and recent results and methods in the reconstructive integral geometry. We do not touch here the problems arising in adaptation of analytic methods to numerical reconstruction algorithms. We refer to the books [61], [62] which are focused on these problems. Various aspects of interplay of integral geometry and differential equations are discussed in Chapters 7 and 8. The results presented here are partially new.

"synopsis" may belong to another edition of this title.

Review

"This book is an excellent overview of the field of integral geometry with emphasis on the functional analytic and differential geometric aspects. The author proves theorems for some of the most important Radon transforms, including transforms on hyperplanes, k-planes, lines, and spheres, and he investigates incomplete (limited) data problems including microlocal analytic issues...This book contains many treasures in integral geometry...and it belongs on the shelf of any analyst or geometer who would like to see how deep functional analysis and differential geometry are used to solve important problems in integral geometry." ―Mathematical Reviews

Synopsis

This book covers facts and methods for the reconstruction of a function in a real affine or projective space from data of integrals, particularly over lines, planes, and spheres. Recent results are collected stressing explicit analytic methods. Another focus consists of the relations between algebraic integral geometry and partial differential equations. A concise basic course in harmonic analysis and distribution theory is given in the first chapter. The first half of the book includes the ray, the spherical mean transforms in the plane or in 3-space, and inversion from incomplete data. It will be of particular interest to application oriented readers. Further chapters are devoted to the Funk-Radon transform on algebraic varieties of arbitrary dimension. The material appeals to graduates and researchers in pure and applied mathematics who are interested in image reconstruction, inverse problems or functional analysis.

"About this title" may belong to another edition of this title.

Other Popular Editions of the Same Title

9783034896290: Reconstructive Integral Geometry: 98 (Monographs in Mathematics, 98)

Featured Edition

ISBN 10:  3034896298 ISBN 13:  9783034896290
Publisher: Birkhäuser, 2012
Softcover