Development of a SOFC system requires proper modelling approaches and the use of numerical process simulators, which will provide clear insight into various aspects of the system operation. One way to couple mass and heat transport phenomena with electrochemical processes at the micro-scale with velocity and temperature distributions in the air and fuel channels at the macro-scale while including aspects of system components integration is to use multi-scale modelling approach in fuel cell research. A concept of numerical modelling of Solid Oxide Fuel Cells at different length scales: system, component and fluid transport at the micro- and macrostructures of electrodes up to cell scale was presented. The major features of multi-scale approach that covers three main types of numerical methods: Computational Chemistry, Computational Fluid Dynamics and Process Simulator tools were described in this book. Presented modelling studies with various degrees of complexity enable a deeper understanding of the mechanisms of processes taking place in the Solid Oxide Fuel Cells. The role of computation in supporting SOFC system development was clearly recognised and summarized.
"synopsis" may belong to another edition of this title.
£ 9.60 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Development of a SOFC system requires proper modelling approaches and the use of numerical process simulators, which will provide clear insight into various aspects of the system operation. One way to couple mass and heat transport phenomena with electrochemical processes at the micro-scale with velocity and temperature distributions in the air and fuel channels at the macro-scale while including aspects of system components integration is to use multi-scale modelling approach in fuel cell research. A concept of numerical modelling of Solid Oxide Fuel Cells at different length scales: system, component and fluid transport at the micro- and macrostructures of electrodes up to cell scale was presented. The major features of multi-scale approach that covers three main types of numerical methods: Computational Chemistry, Computational Fluid Dynamics and Process Simulator tools were described in this book. Presented modelling studies with various degrees of complexity enable a deeper understanding of the mechanisms of processes taking place in the Solid Oxide Fuel Cells. The role of computation in supporting SOFC system development was clearly recognised and summarized. 68 pp. Englisch. Seller Inventory # 9783659622953
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Development of a SOFC system requires proper modelling approaches and the use of numerical process simulators, which will provide clear insight into various aspects of the system operation. One way to couple mass and heat transport phenomena with electrochemical processes at the micro-scale with velocity and temperature distributions in the air and fuel channels at the macro-scale while including aspects of system components integration is to use multi-scale modelling approach in fuel cell research. A concept of numerical modelling of Solid Oxide Fuel Cells at different length scales: system, component and fluid transport at the micro- and macrostructures of electrodes up to cell scale was presented. The major features of multi-scale approach that covers three main types of numerical methods: Computational Chemistry, Computational Fluid Dynamics and Process Simulator tools were described in this book. Presented modelling studies with various degrees of complexity enable a deeper understanding of the mechanisms of processes taking place in the Solid Oxide Fuel Cells. The role of computation in supporting SOFC system development was clearly recognised and summarized. Seller Inventory # 9783659622953
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Pianko-Oprych PaulinaPaulina Pianko-Oprych was awarded a PhD with distinction in 2005 and has been a lecturer at the West Pomeranian University of Technology, Szczecin since 2007. She has been publishing her research results since Oc. Seller Inventory # 5169073
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Development of a SOFC system requires proper modelling approaches and the use of numerical process simulators, which will provide clear insight into various aspects of the system operation. One way to couple mass and heat transport phenomena with electrochemical processes at the micro-scale with velocity and temperature distributions in the air and fuel channels at the macro-scale while including aspects of system components integration is to use multi-scale modelling approach in fuel cell research. A concept of numerical modelling of Solid Oxide Fuel Cells at different length scales: system, component and fluid transport at the micro- and macrostructures of electrodes up to cell scale was presented. The major features of multi-scale approach that covers three main types of numerical methods: Computational Chemistry, Computational Fluid Dynamics and Process Simulator tools were described in this book. Presented modelling studies with various degrees of complexity enable a deeper understanding of the mechanisms of processes taking place in the Solid Oxide Fuel Cells. The role of computation in supporting SOFC system development was clearly recognised and summarized.Books on Demand GmbH, Überseering 33, 22297 Hamburg 68 pp. Englisch. Seller Inventory # 9783659622953
Quantity: 2 available