The objective of this work is to design and implement a self-adaptive parallel GPU optimized Monte Carlo algorithm for the simulation of adsorption in porous materials. We focus on Nvidia's GPUs and CUDA's Fermi architecture specifically. The resulting package supports the different ensemble methods for the Monte Carlo simulation, which will allow for the simulation of multi-component adsorption in porous solids. Such an algorithm will have broad applications to the development of novel porous materials for the sequestration of CO2 and the filtration of toxic industrial chemicals. The primary objective of this work is the release of a massively parallel open source Monte Carlo simulation engine implemented using GPUs, called GOMC. The code will utilize the canonical ensemble, and the Gibbs ensemble method, which will allow for the simulation of multiple phenomena, including liquid-vapor phase coexistence, and single and multi-component adsorption in porous materials. In addition, the grand canonical ensemble and the configurational-bias algorithms have been implemented so that polymeric materials and small proteins may be simulated.
"synopsis" may belong to another edition of this title.
Eyad Hailat earned his Ph.D. in Computer Science from Wayne State University in 2013. His research interest includes High Performance Computing for massively parallel devices, such as the GPU. One application for his research is numerical simulations to accurately predict properties of materials and their guest-adsorption characteristics.
"About this title" may belong to another edition of this title.
£ 9.54 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The objective of this work is to design and implement a self-adaptive parallel GPU optimized Monte Carlo algorithm for the simulation of adsorption in porous materials. We focus on Nvidia's GPUs and CUDA's Fermi architecture specifically. The resulting package supports the different ensemble methods for the Monte Carlo simulation, which will allow for the simulation of multi-component adsorption in porous solids. Such an algorithm will have broad applications to the development of novel porous materials for the sequestration of CO2 and the filtration of toxic industrial chemicals. The primary objective of this work is the release of a massively parallel open source Monte Carlo simulation engine implemented using GPUs, called GOMC. The code will utilize the canonical ensemble, and the Gibbs ensemble method, which will allow for the simulation of multiple phenomena, including liquid-vapor phase coexistence, and single and multi-component adsorption in porous materials. In addition, the grand canonical ensemble and the configurational-bias algorithms have been implemented so that polymeric materials and small proteins may be simulated. 132 pp. Englisch. Seller Inventory # 9783659554636
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The objective of this work is to design and implement a self-adaptive parallel GPU optimized Monte Carlo algorithm for the simulation of adsorption in porous materials. We focus on Nvidia's GPUs and CUDA's Fermi architecture specifically. The resulting package supports the different ensemble methods for the Monte Carlo simulation, which will allow for the simulation of multi-component adsorption in porous solids. Such an algorithm will have broad applications to the development of novel porous materials for the sequestration of CO2 and the filtration of toxic industrial chemicals. The primary objective of this work is the release of a massively parallel open source Monte Carlo simulation engine implemented using GPUs, called GOMC. The code will utilize the canonical ensemble, and the Gibbs ensemble method, which will allow for the simulation of multiple phenomena, including liquid-vapor phase coexistence, and single and multi-component adsorption in porous materials. In addition, the grand canonical ensemble and the configurational-bias algorithms have been implemented so that polymeric materials and small proteins may be simulated. Seller Inventory # 9783659554636
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Hailat EyadEyad Hailat earned his Ph.D. in Computer Science from Wayne State University in 2013. His research interest includes High Performance Computing for massively parallel devices, such as the GPU. One application for his resea. Seller Inventory # 5164492
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -The objective of this work is to design and implement a self-adaptive parallel GPU optimized Monte Carlo algorithm for the simulation of adsorption in porous materials. We focus on Nvidia's GPUs and CUDA's Fermi architecture specifically. The resulting package supports the different ensemble methods for the Monte Carlo simulation, which will allow for the simulation of multi-component adsorption in porous solids. Such an algorithm will have broad applications to the development of novel porous materials for the sequestration of CO2 and the filtration of toxic industrial chemicals. The primary objective of this work is the release of a massively parallel open source Monte Carlo simulation engine implemented using GPUs, called GOMC. The code will utilize the canonical ensemble, and the Gibbs ensemble method, which will allow for the simulation of multiple phenomena, including liquid-vapor phase coexistence, and single and multi-component adsorption in porous materials. In addition, the grand canonical ensemble and the configurational-bias algorithms have been implemented so that polymeric materials and small proteins may be simulated.Books on Demand GmbH, Überseering 33, 22297 Hamburg 132 pp. Englisch. Seller Inventory # 9783659554636
Quantity: 2 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
paperback. Condition: New. New. book. Seller Inventory # ERICA82936595546346
Quantity: 1 available