A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo "controlled" by parameters u(t) (the "controls"). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (*) are solutions to the "differen tial inclusion" (**) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (**), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a "maximal monotone" map. This class of inclusions contains the class of "gradient inclusions" which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable "potential". 2 Introduction There are many instances when potential functions are not differentiable.
"synopsis" may belong to another edition of this title.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783642695148_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 0. Background Notes.- 1. Continuous Partitions of Unity.- 2. Absolutely Continuous Functions.- 3. Some Compactness Theorems.- 4. Weak Convergence and Asymptotic Center of Bounded Sequences.- 5. Closed Convex Hulls and the Mean-Value Theorem.- 6. Lower Semic. Seller Inventory # 5068306
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo 'controlled' by parameters u(t) (the 'controls'). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations ( ) are solutions to the 'differen tial inclusion' ( ) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion ( ), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a 'maximal monotone' map. This class of inclusions contains the class of 'gradient inclusions' which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable 'potential'. 2 Introduction There are many instances when potential functions are not differentiable. 364 pp. Englisch. Seller Inventory # 9783642695148
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo 'controlled' by parameters u(t) (the 'controls'). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations ( ) are solutions to the 'differen tial inclusion' ( ) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion ( ), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a 'maximal monotone' map. This class of inclusions contains the class of 'gradient inclusions' which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable 'potential'. 2 Introduction There are many instances when potential functions are not differentiable. Seller Inventory # 9783642695148
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783642695148
Quantity: Over 20 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo 'controlled' by parameters u(t) (the 'controls'). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (\*) are solutions to the 'differen tial inclusion' (\*\*) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (\*\*), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a 'maximal monotone' map. This class of inclusions contains the class of 'gradient inclusions' which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable 'potential'. 2 Introduction There are many instances when potential functions are not differentiable.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 364 pp. Englisch. Seller Inventory # 9783642695148
Quantity: 2 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020234263
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. reprint edition. 355 pages. 9.00x6.10x0.90 inches. In Stock. Seller Inventory # x-3642695140
Quantity: 2 available