At the end of the nineteenth century Lyapunov and Poincaré developed the so called qualitative theory of differential equations and introduced geometric- topological considerations which have led to the concept of dynamical systems. In its present abstract form this concept goes back to G.D. Birkhoff. This is also the starting point of Chapter 1 of this book in which uncontrolled and controlled time-continuous and time-discrete systems are investigated. Controlled dynamical systems could be considered as dynamical systems in the strong sense, if the controls were incorporated into the state space. We, however, adapt the conventional treatment of controlled systems as in control theory. We are mainly interested in the question of controllability of dynamical systems into equilibrium states. In the non-autonomous time-discrete case we also consider the problem of stabilization. We conclude with chaotic behavior of autonomous time discrete systems and actual real-world applications.
"synopsis" may belong to another edition of this title.
Stefan Pickl ist seit 1980 Professor für Operations Research an der Universität der Bundeswehr München. Werner Krabs war Professor am Fachbereich Mathematik an der TU Darmstadt. Er wurde 1999 emeritiert.
At the end of the nineteenth century Lyapunov and Poincaré developed the so called qualitative theory of differential equations and introduced geometric-topological considerations which have led to the concept of dynamical systems. In its present abstract form this concept goes back to G.D. Birkhoff. This is also the starting point of Chapter 1 of this book in which uncontrolled and controlled time-continuous and time-discrete systems are investigated. Controlled dynamical systems could be considered as dynamical systems in the strong sense, if the controls were incorporated into the state space. We, however, adapt the conventional treatment of controlled systems as in control theory. We are mainly interested in the question of controllability of dynamical systems into equilibrium states. In the non-autonomous time-discrete case we also consider the problem of stabilization. We conclude with chaotic behavior of autonomous time discrete systems and actual real-world applications.
"About this title" may belong to another edition of this title.
£ 8 shipping within United Kingdom
Destination, rates & speeds£ 2.38 shipping from Italy to United Kingdom
Destination, rates & speedsSeller: Brook Bookstore On Demand, Napoli, NA, Italy
Condition: new. Questo è un articolo print on demand. Seller Inventory # ea34c4e46b8e4e9d80c8960b774ce992
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Interesting and actual topicUnique characterizationRelevant related real-world examples (Environmental Management/ Medicine)Stefan Pickl ist seit 1980 Professor fuer Operations Research an der Universitaet der Bundeswehr Muenchen. Werner Krabs war Professo. Seller Inventory # 11800966
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -At the end of the nineteenth century Lyapunov and Poincaré developed the so called qualitative theory of differential equations and introduced geometric- topological considerations which have led to the concept of dynamical systems. In its present abstract form this concept goes back to G.D. Birkhoff. This is also the starting point of Chapter 1 of this book in which uncontrolled and controlled time-continuous and time-discrete systems are investigated. Controlled dynamical systems could be considered as dynamical systems in the strong sense, if the controls were incorporated into the state space. We, however, adapt the conventional treatment of controlled systems as in control theory. We are mainly interested in the question of controllability of dynamical systems into equilibrium states. In the non-autonomous time-discrete case we also consider the problem of stabilization. We conclude with chaotic behavior of autonomous time discrete systems and actual real-world applications. 248 pp. Englisch. Seller Inventory # 9783642435171
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - At the end of the nineteenth century Lyapunov and Poincaré developed the so called qualitative theory of differential equations and introduced geometric- topological considerations which have led to the concept of dynamical systems. In its present abstract form this concept goes back to G.D. Birkhoff. This is also the starting point of Chapter 1 of this book in which uncontrolled and controlled time-continuous and time-discrete systems are investigated. Controlled dynamical systems could be considered as dynamical systems in the strong sense, if the controls were incorporated into the state space. We, however, adapt the conventional treatment of controlled systems as in control theory. We are mainly interested in the question of controllability of dynamical systems into equilibrium states. In the non-autonomous time-discrete case we also consider the problem of stabilization. We conclude with chaotic behavior of autonomous time discrete systems and actual real-world applications. Seller Inventory # 9783642435171
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -At the end of the nineteenth century Lyapunov and Poincaré developed the so called qualitative theory of differential equations and introduced geometric- topological considerations which have led to the concept of dynamical systems. In its present abstract form this concept goes back to G.D. Birkhoff. This is also the starting point of Chapter 1 of this book in which uncontrolled and controlled time-continuous and time-discrete systems are investigated. Controlled dynamical systems could be considered as dynamical systems in the strong sense, if the controls were incorporated into the state space. We, however, adapt the conventional treatment of controlled systems as in control theory. We are mainly interested in the question of controllability of dynamical systems into equilibrium states. In the non-autonomous time-discrete case we also consider the problem of stabilization. We conclude with chaotic behavior of autonomous time discrete systems and actual real-world applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 248 pp. Englisch. Seller Inventory # 9783642435171
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 248. Seller Inventory # 26378325267
Quantity: 4 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 248. Seller Inventory # 385578700
Quantity: 4 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 2010 edition. 248 pages. 9.25x6.10x0.56 inches. In Stock. Seller Inventory # 3642435173
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 248. Seller Inventory # 18378325273
Quantity: 4 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA80036424351736
Quantity: 1 available