At the end of 1960s and the beginning of 1970s, when the Russian version of this book was written, the 'general theory of random processes' did not operate widely with such notions as semimartingale, stochastic integral with respect to semimartingale, the ItO formula for semimartingales, etc. At that time in stochastic calculus (theory of martingales), the main object was the square integrable martingale. In a short time, this theory was applied to such areas as nonlinear filtering, optimal stochastic control, statistics for diffusion type processes. In the first edition of these volumes, the stochastic calculus, based on square integrable martingale theory, was presented in detail with the proof of the Doob-Meyer decomposition for submartingales and the description of a structure for stochastic integrals. In the first volume ('General Theory') these results were used for a presentation of further important facts such as the Girsanov theorem and its generalizations, theorems on the innovation pro cesses, structure of the densities (Radon-Nikodym derivatives) for absolutely continuous measures being distributions of diffusion and Itô-type processes, and existence theorems for weak and strong solutions of stochastic differential equations. All the results and facts mentioned above have played a key role in the derivation of 'general equations' for nonlinear filtering, prediction, and smoothing of random processes.
"synopsis" may belong to another edition of this title.
The subject of these two volumes is non-linear filtering (prediction and smoothing) theory and its application to the problem of optimal estimation, control with incomplete data, information theory, and sequential testing of hypothesis. The required mathematical background is presented in the first volume: the theory of martingales, stochastic differential equations, the absolute continuity of probability measures for diffusion and Ito processes, elements of stochastic calculus for counting processes. The book is not only addressed to mathematicians but should also serve the interests of other scientists who apply probabilistic and statistical methods in their work. The theory of martingales presented in the book has an independent interest in connection with problems from financial mathematics.
In the second edition, the authors have made numerous corrections, updating every chapter, adding two new subsections devoted to the Kalman filter under wrong initial conditions, as well asa new chapter devoted to asymptotically optimal filtering under diffusion approximation. Moreover, in each chapter a comment is added about the progress of recent years.
"About this title" may belong to another edition of this title.
£ 8 shipping within United Kingdom
Destination, rates & speedsSeller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783642083662_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In the second edition, two new subsections devoted to the Kalman filter under wrong initial conditions, and a new chapter on asymptotically optimal filtering under diffusion approximation have been addedIn each chapter a comment is added about the progr. Seller Inventory # 5047407
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -At the end of 1960s and the beginning of 1970s, when the Russian version of this book was written, the 'general theory of random processes' did not operate widely with such notions as semimartingale, stochastic integral with respect to semimartingale, the ItO formula for semimartingales, etc. At that time in stochastic calculus (theory of martingales), the main object was the square integrable martingale. In a short time, this theory was applied to such areas as nonlinear filtering, optimal stochastic control, statistics for diffusion type processes. In the first edition of these volumes, the stochastic calculus, based on square integrable martingale theory, was presented in detail with the proof of the Doob-Meyer decomposition for submartingales and the description of a structure for stochastic integrals. In the first volume ('General Theory') these results were used for a presentation of further important facts such as the Girsanov theorem and its generalizations, theorems on the innovation pro cesses, structure of the densities (Radon-Nikodym derivatives) for absolutely continuous measures being distributions of diffusion and Itô-type processes, and existence theorems for weak and strong solutions of stochastic differential equations. All the results and facts mentioned above have played a key role in the derivation of 'general equations' for nonlinear filtering, prediction, and smoothing of random processes. 448 pp. Englisch. Seller Inventory # 9783642083662
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - At the end of 1960s and the beginning of 1970s, when the Russian version of this book was written, the 'general theory of random processes' did not operate widely with such notions as semimartingale, stochastic integral with respect to semimartingale, the ItO formula for semimartingales, etc. At that time in stochastic calculus (theory of martingales), the main object was the square integrable martingale. In a short time, this theory was applied to such areas as nonlinear filtering, optimal stochastic control, statistics for diffusion type processes. In the first edition of these volumes, the stochastic calculus, based on square integrable martingale theory, was presented in detail with the proof of the Doob-Meyer decomposition for submartingales and the description of a structure for stochastic integrals. In the first volume ('General Theory') these results were used for a presentation of further important facts such as the Girsanov theorem and its generalizations, theorems on the innovation pro cesses, structure of the densities (Radon-Nikodym derivatives) for absolutely continuous measures being distributions of diffusion and Itô-type processes, and existence theorems for weak and strong solutions of stochastic differential equations. All the results and facts mentioned above have played a key role in the derivation of 'general equations' for nonlinear filtering, prediction, and smoothing of random processes. Seller Inventory # 9783642083662
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -At the end of 1960s and the beginning of 1970s, when the Russian version of this book was written, the 'general theory of random processes' did not operate widely with such notions as semimartingale, stochastic integral with respect to semimartingale, the ItO formula for semimartingales, etc. At that time in stochastic calculus (theory of martingales), the main object was the square integrable martingale. In a short time, this theory was applied to such areas as nonlinear filtering, optimal stochastic control, statistics for diffusion type processes. In the first edition of these volumes, the stochastic calculus, based on square integrable martingale theory, was presented in detail with the proof of the Doob-Meyer decomposition for submartingales and the description of a structure for stochastic integrals. In the first volume ('General Theory') these results were used for a presentation of further important facts such as the Girsanov theorem and its generalizations, theorems on the innovation pro cesses, structure of the densities (Radon-Nikodym derivatives) for absolutely continuous measures being distributions of diffusion and Itô-type processes, and existence theorems for weak and strong solutions of stochastic differential equations. All the results and facts mentioned above have played a key role in the derivation of 'general equations' for nonlinear filtering, prediction, and smoothing of random processes.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 448 pp. Englisch. Seller Inventory # 9783642083662
Quantity: 2 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar3113020217021
Quantity: Over 20 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA79036420836686
Quantity: 1 available