Visual recognition remains an extremely challenging problem in computer vision. Most previous approaches have been evaluated on small datasets. However, ImageNet dataset with millions images for thousands classes poses more challenges for the next generation of vision mechanisms. Learning an efficient visual classifier and constructing a robust visual representation in a large scale scenario are two main research issues. In this book, we present how to tackle these issues. Firstly, a novel approach is presented by using several local descriptors to improve the discriminative power of image representation. Secondly, the state-of-the-art SVMs are extended by building the balanced bagging classifiers with sampling strategy and parallelizing the training process with several multi-core computers. Thirdly, the binary stochastic gradient descent SVM is developed to the new multiclass SVM for efficiently classifying large image datasets into many classes. Finally, when the training data cannot fit into computer memory, the training task of SVM becomes more complicated to deal with. This challenge is addressed by an incremental learning method for both large scale linear and nonlinear SVMs
"synopsis" may belong to another edition of this title.
£ 21.65 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Doan Thanh-NghiThanh-Nghi Doan received his Doctorate degree in computer science from University of Rennes 1, France, 2013. He was working as a Ph.D. candidate in TEXMEX Research Team, IRISA, France. Currently, he is working at An Gi. Seller Inventory # 151398522
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Visual recognition remains an extremely challenging problem in computer vision. Most previous approaches have been evaluated on small datasets. However, ImageNet dataset with millions images for thousands classes poses more challenges for the next generation of vision mechanisms. Learning an efficient visual classifier and constructing a robust visual representation in a large scale scenario are two main research issues. In this book, we present how to tackle these issues. Firstly, a novel approach is presented by using several local descriptors to improve the discriminative power of image representation. Secondly, the state-of-the-art SVMs are extended by building the balanced bagging classifiers with sampling strategy and parallelizing the training process with several multi-core computers. Thirdly, the binary stochastic gradient descent SVM is developed to the new multiclass SVM for efficiently classifying large image datasets into many classes. Finally, when the training data cannot fit into computer memory, the training task of SVM becomes more complicated to deal with. This challenge is addressed by an incremental learning method for both large scale linear and nonlinear SVMs 164 pp. Englisch. Seller Inventory # 9783639715750
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Visual recognition remains an extremely challenging problem in computer vision. Most previous approaches have been evaluated on small datasets. However, ImageNet dataset with millions images for thousands classes poses more challenges for the next generation of vision mechanisms. Learning an efficient visual classifier and constructing a robust visual representation in a large scale scenario are two main research issues. In this book, we present how to tackle these issues. Firstly, a novel approach is presented by using several local descriptors to improve the discriminative power of image representation. Secondly, the state-of-the-art SVMs are extended by building the balanced bagging classifiers with sampling strategy and parallelizing the training process with several multi-core computers. Thirdly, the binary stochastic gradient descent SVM is developed to the new multiclass SVM for efficiently classifying large image datasets into many classes. Finally, when the training data cannot fit into computer memory, the training task of SVM becomes more complicated to deal with. This challenge is addressed by an incremental learning method for both large scale linear and nonlinear SVMs. Seller Inventory # 9783639715750
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 164. Seller Inventory # 26128106464
Quantity: 4 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -Visual recognition remains an extremely challenging problem in computer vision. Most previous approaches have been evaluated on small datasets. However, ImageNet dataset with millions images for thousands classes poses more challenges for the next generation of vision mechanisms. Learning an efficient visual classifier and constructing a robust visual representation in a large scale scenario are two main research issues. In this book, we present how to tackle these issues. Firstly, a novel approach is presented by using several local descriptors to improve the discriminative power of image representation. Secondly, the state-of-the-art SVMs are extended by building the balanced bagging classifiers with sampling strategy and parallelizing the training process with several multi-core computers. Thirdly, the binary stochastic gradient descent SVM is developed to the new multiclass SVM for efficiently classifying large image datasets into many classes. Finally, when the training data cannot fit into computer memory, the training task of SVM becomes more complicated to deal with. This challenge is addressed by an incremental learning method for both large scale linear and nonlinear SVMsVDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 164 pp. Englisch. Seller Inventory # 9783639715750
Quantity: 2 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 164 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Seller Inventory # 131399743
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 164. Seller Inventory # 18128106474
Quantity: 4 available