This book presents the foundations of the inverse scattering method and its applications to the theory of solitons in such a form as we understand it in Leningrad. The concept of solitonwas introduced by Kruskal and Zabusky in 1965. A soliton (a solitary wave) is a localized particle-like solution of a nonlinear equation which describes excitations of finite energy and exhibits several characteristic features: propagation does not destroy the profile of a solitary wave; the interaction of several solitary waves amounts to their elastic scat tering, so that their total number and shape are preserved. Occasionally, the concept of the soliton is treated in a more general sense as a localized solu tion of finite energy. At present this concept is widely spread due to its universality and the abundance of applications in the analysis of various processes in nonlinear media. The inverse scattering method which is the mathematical basis of soliton theory has developed into a powerful tool of mathematical physics for studying nonlinear partial differential equations, almost as vigoraus as the Fourier transform. The book is based on the Hamiltonian interpretation of the method, hence the title. Methods of differential geometry and Hamiltonian formal ism in particular are very popular in modern mathematical physics. It is precisely the general Hamiltonian formalism that presents the inverse scat tering method in its most elegant form. Moreover, the Hamiltonian formal ism provides a link between classical and quantum mechanics.
"synopsis" may belong to another edition of this title.
Ludwig D. Faddeev was born in Leningrad, USSR in 1934. He graduated from the Leningrad State University in 1956 and received his Ph.D. from there in 1959. Since 1959 he has been affiliated with the Leningrad branch of Steklov Mathematical Institute and was its Director from 1976 to 2000. Currently Faddeev is Director of the Euler International Mathematical Institute in St. Petersburg, Russia, and Academician-Secretary of the Mathematics Division of the Russian Academy of Sciences. He was President of the International Mathematical Union during1986-1990.
Faddeev’s principal interests and contributions cover the large area of mathematical physics. They include, in chronological order, quantum scattering theory, spectral theory of automorphic functions, quantization of Yang-Mills theories, Hamiltonian methods in classical and quantum integrable systems, quantum groups and quantum integrable systems on a lattice. Faddeev’s work laid a mathematical foundation for functional methods in quantum gauge theories. A great deal of his work was directed towards development of Hamiltonian methods in classical and quantum field theories.
Leon A. Takhtajan was born in Erevan, Republic of Armenia of the USSR, in 1950. He was schooled in Leningrad, graduated from the Leningrad State University in 1973, and received his Ph.D. from the Leningrad branch of Steklov Mathematical Institute in 1975, with which he was affiliated during1973-1998. Since 1992 he has been Professor of Mathematics at Stony Brook University, USA.
Takhtajan’s principal interests and contributions are in the area of mathematical physics. They include classical and quantum integrable systems, quantum groups, Weil-Petersson geometry of moduli spaces of Riemann surfaces and moduli spaces of vector bundles, and application of quantum methods to algebraic and complex analysis. His work, together withL.D. Faddeev and E.K. Sklyanin, led to the development of the quantum inverse scattering method from which the theory of quantum groups was born.
The main characteristic of this now classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation, rather than the (more usual) KdV equation, is considered as a main example. The investigation of this equation forms the first part of the book. The second part is devoted to such fundamental models as the sine-Gordon equation, Heisenberg equation, Toda lattice, etc, the classification of integrable models and the methods for constructing their solutions.
"About this title" may belong to another edition of this title.
FREE shipping within United Kingdom
Destination, rates & speedsFREE shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-86372
Quantity: 1 available
Seller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-269188
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 5163350-n
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783540698432_new
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. pp. 608 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Seller Inventory # 7546066
Quantity: 1 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions. 608 pp. Englisch. Seller Inventory # 9783540698432
Quantity: 2 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 608. Seller Inventory # 26301837
Quantity: 1 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the foundations of the inverse scattering method and its applications to the theory of solitons in such a form as we understand it in Leningrad. The concept of solitonwas introduced by Kruskal and Zabusky in 1965. A soliton (a solitary wave) is a localized particle-like solution of a nonlinear equation which describes excitations of finite energy and exhibits several characteristic features: propagation does not destroy the profile of a solitary wave; the interaction of several solitary waves amounts to their elastic scat tering, so that their total number and shape are preserved. Occasionally, the concept of the soliton is treated in a more general sense as a localized solu tion of finite energy. At present this concept is widely spread due to its universality and the abundance of applications in the analysis of various processes in nonlinear media. The inverse scattering method which is the mathematical basis of soliton theory has developed into a powerful tool of mathematical physics for studying nonlinear partial differential equations, almost as vigoraus as the Fourier transform. The book is based on the Hamiltonian interpretation of the method, hence the title. Methods of differential geometry and Hamiltonian formal ism in particular are very popular in modern mathematical physics. It is precisely the general Hamiltonian formalism that presents the inverse scat tering method in its most elegant form. Moreover, the Hamiltonian formal ism provides a link between classical and quantum mechanics. Seller Inventory # 9783540698432
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. pp. 608. Seller Inventory # 18301831
Quantity: 1 available
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt.  Includes supplementary material: sn.pub/extrasLudwig D. Faddeev was born in Leningrad, USSR in 1934. He graduated from the Leningrad State University in 1956 and received his Ph.D. from there in 1959. Since 1959 he h. Seller Inventory # 4898904
Quantity: Over 20 available