The variable metric algorithm is widely recognised as one of the most efficient ways of solving the following problem:- Locate x* a local minimum point n ( 1) of f(x) x E R Considerable attention has been given to the study of the convergence prop- ties of this algorithm especially for the case where analytic expressions are avai- ble for the derivatives g. = af/ax. i 1 ••• n • (2) ~ ~ In particular we shall mention the results of Wolfe (1969) and Powell (1972), (1975). Wolfe established general conditions under which a descent algorithm will converge to a stationary point and Powell showed that two particular very efficient algorithms that cannot be shown to satisfy \,olfe's conditions do in fact converge to the minimum of convex functions under certain conditions. These results will be st- ed more completely in Section 2. In most practical problems analytic expressions for the gradient vector g (Equ. 2) are not available and numerical derivatives are subject to truncation error. In Section 3 we shall consider the effects of these errors on Wolfe's convergent prop- ties and will discuss possible modifications of the algorithms to make them reliable in these circumstances. The effects of rounding error are considered in Section 4, whilst in Section 5 these thoughts are extended to include the case of on-line fu- tion minimisation where each function evaluation is subject to random noise.
"synopsis" may belong to another edition of this title.
£ 7.80 shipping from Germany to United Kingdom
Destination, rates & speeds£ 12.13 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: NEPO UG, Rüsselsheim am Main, Germany
Taschenbuch. Condition: Gut. nice book ex Library Sprache: Englisch Gewicht in Gramm: 550 Auflage: Softcover reprint of the original 1st ed. 1976. Seller Inventory # 338640
Quantity: 1 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The variable metric algorithm is widely recognised as one of the most efficient ways of solving the following problem:- Locate x\* a local minimum point n ( 1) of f(x) x E R Considerable attention has been given to the study of the convergence prop- ties of this algorithm especially for the case where analytic expressions are avai- ble for the derivatives g. = af/ax. i 1 --- n - (2) ~ ~ In particular we shall mention the results of Wolfe (1969) and Powell (1972), (1975). Wolfe established general conditions under which a descent algorithm will converge to a stationary point and Powell showed that two particular very efficient algorithms that cannot be shown to satisfy ,olfe's conditions do in fact converge to the minimum of convex functions under certain conditions. These results will be st- ed more completely in Section 2. In most practical problems analytic expressions for the gradient vector g (Equ. 2) are not available and numerical derivatives are subject to truncation error. In Section 3 we shall consider the effects of these errors on Wolfe's convergent prop- ties and will discuss possible modifications of the algorithms to make them reliable in these circumstances. The effects of rounding error are considered in Section 4, whilst in Section 5 these thoughts are extended to include the case of on-line fu- tion minimisation where each function evaluation is subject to random noise. Seller Inventory # 9783540076162
Quantity: 1 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783540076162
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The variable metric algorithm is widely recognised as one of the most efficient ways of solving the following problem:- Locate x* a local minimum point n ( 1) of f(x) x E R Considerable attention has been given to the study of the convergence prop- ties of . Seller Inventory # 4879676
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 328 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Seller Inventory # 353650750
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 328. Seller Inventory # 26358873057
Quantity: 4 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. rep blg edition. 328 pages. German language. 9.60x6.69x0.74 inches. In Stock. Seller Inventory # x-3540076166
Quantity: 2 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The variable metric algorithm is widely recognised as one of the most efficient ways of solving the following problem:- Locate x\* a local minimum point n ( 1) of f(x) x E R Considerable attention has been given to the study of the convergence prop- ties of this algorithm especially for the case where analytic expressions are avai- ble for the derivatives g. = af/ax. i 1 ¿¿¿ n ¿ (2) ~ ~ In particular we shall mention the results of Wolfe (1969) and Powell (1972), (1975). Wolfe established general conditions under which a descent algorithm will converge to a stationary point and Powell showed that two particular very efficient algorithms that cannot be shown to satisfy ,olfe's conditions do in fact converge to the minimum of convex functions under certain conditions. These results will be st- ed more completely in Section 2. In most practical problems analytic expressions for the gradient vector g (Equ. 2) are not available and numerical derivatives are subject to truncation error. In Section 3 we shall consider the effects of these errors on Wolfe's convergent prop- ties and will discuss possible modifications of the algorithms to make them reliable in these circumstances. The effects of rounding error are considered in Section 4, whilst in Section 5 these thoughts are extended to include the case of on-line fu- tion minimisation where each function evaluation is subject to random noise.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 328 pp. Englisch. Seller Inventory # 9783540076162
Quantity: 1 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 328. Seller Inventory # 18358873067
Quantity: 4 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-IUK-9783540076162
Quantity: 10 available