This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients.
This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.
"synopsis" may belong to another edition of this title.
Emmanuel Amiot teaches mathematics at the Lycée François Arago in Perpignan, he is a researcher in the Laboratoire de Mathématiques et Physique (LAMPS) of Université de Perpignan Via Domitia, and he is a regular collaborator with researchers at the Institut de Recherche et Coordination Acoustique/Musique (IRCAM), Paris. He is a pioneer of the techniques described in this textbook, with considerable research and teaching experience in the related areas, geometry, topology, and applied mathematics.
This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients.
This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.
"About this title" may belong to another edition of this title.
£ 5.01 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 27024448-n
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783319455808_new
Quantity: Over 20 available
Seller: Better World Books: West, Reno, NV, U.S.A.
Condition: Good. Used book that is in clean, average condition without any missing pages. Seller Inventory # 17262734-75
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 27024448
Quantity: Over 20 available
Seller: Plurabelle Books Ltd, Cambridge, United Kingdom
Hardback. Condition: As New. Series: Computational Music Science. xv 206p hardback, blue and yellow laminated boards, like new condition, no noticeable wear, tight binding pages clean and neat, colour and b&w diagrams throughout, an excellent copy with no sign of use Language: English Weight (g): 4616. Seller Inventory # 233728
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 27024448-n
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 27024448
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency,extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems. 224 pp. Englisch. Seller Inventory # 9783319455808
Quantity: 2 available
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 127946435
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency,extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems. Seller Inventory # 9783319455808
Quantity: 1 available