This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations. Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations.
This book is specifically devoted to the study of evolution equations – i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) – bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has beendevoted to elliptic equations and related spectral problems. Moreover, for tackling the most general settings - e.g. encoded in the transmission conditions in the network nodes - one classical and elegant tool is that of operator semigroups. This book is simultaneously a very concise introduction to this theory and a handbook on its applications to differential equations on networks.
With a more interdisciplinary readership in mind, full proofs of mathematical statements have been frequently omitted in favor of keeping the text as concise, fluid and self-contained as possible. In addition, a brief chapter devoted to the field of neurodynamics of the brain cortex provides a concrete link to ongoing applied research.
"synopsis" may belong to another edition of this title.
This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations. Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations.
This book is specifically devoted to the study of evolution equations – i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) – bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphshas been devoted to elliptic equations and related spectral problems. Moreover, for tackling the most general settings - e.g. encoded in the transmission conditions in the network nodes - one classical and elegant tool is that of operator semigroups. This book is simultaneously a very concise introduction to this theory and a handbook on its applications to differential equations on networks.
With a more interdisciplinary readership in mind, full proofs of mathematical statements have been frequently omitted in favor of keeping the text as concise, fluid and self-contained as possible. In addition, a brief chapter devoted to the field of neurodynamics of the brain cortex provides a concrete link to ongoing applied research.
"About this title" may belong to another edition of this title.
FREE shipping within United Kingdom
Destination, rates & speedsSeller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 21055599-n
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783319046204_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations. Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations.This book is specifically devoted to the study of evolution equations - i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) - bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has been devoted to elliptic equations and related spectral problems. Moreover, for tackling the most general settings - e.g. encoded in the transmission conditions in the network nodes - one classical and elegant tool is that of operator semigroups. This book is simultaneously a very concise introduction to this theory and a handbook on its applications to differential equations on networks.With a more interdisciplinary readership in mind, full proofs of mathematical statements have been frequently omitted in favor of keeping the text as concise, fluid and self-contained as possible. In addition, a brief chapter devoted to the field of neurodynamics of the brain cortex provides a concrete link to ongoing applied research. 304 pp. Englisch. Seller Inventory # 9783319046204
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations. Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations.This book is specifically devoted to the study of evolution equations - i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) - bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has beendevoted to elliptic equations and related spectral problems. Moreover, for tackling the most general settings - e.g. encoded in the transmission conditions in the network nodes - one classical and elegant tool is that of operator semigroups. This book is simultaneously a very concise introduction to this theory and a handbook on its applications to differential equations on networks.With a more interdisciplinary readership in mind, full proofs of mathematical statements have been frequently omitted in favor of keeping the text as concise, fluid and self-contained as possible. In addition, a brief chapter devoted to the field of neurodynamics of the brain cortex provides a concrete link to ongoing applied research. Seller Inventory # 9783319046204
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 21055599-n
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Course-based and self-contained presentationSuitable as graduate textbook or self-study guideCombines classical results on hyperbolic and parabolic equations on networks with operator semigroup approachesThis concise text i. Seller Inventory # 4497033
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Hardcover. Condition: Brand New. 286 pages. 9.00x6.00x1.00 inches. In Stock. Seller Inventory # x-3319046209
Quantity: 2 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations. Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations.This book is specifically devoted to the study of evolution equations ¿ i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) ¿ bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has beendevoted to elliptic equations and related spectral problems. Moreover, for tackling the most general settings - e.g. encoded in the transmission conditions in the network nodes - one classical and elegant tool is that of operator semigroups. This book is simultaneously a very concise introduction to this theory and a handbook on its applications to differential equations on networks.With a more interdisciplinary readership in mind, full proofs of mathematical statements have been frequently omitted in favor of keeping the text as concise, fluid and self-contained as possible. In addition, a brief chapter devoted to the field of neurodynamics of the brain cortex provides a concrete link to ongoing applied research.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 304 pp. Englisch. Seller Inventory # 9783319046204
Quantity: 2 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 21055599
Quantity: Over 20 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Hardcover. Condition: Like New. Like New. book. Seller Inventory # ERICA77333190462096
Quantity: 1 available