This book systemically presents key concepts of multi-modal hashing technology, recent advances on large-scale efficient multimedia search and recommendation, and recent achievements in multimedia indexing technology. With the explosive growth of multimedia contents, multimedia retrieval is currently facing unprecedented challenges in both storage cost and retrieval speed. The multi-modal hashing technique can project high-dimensional data into compact binary hash codes. With it, the most time-consuming semantic similarity computation during the multimedia retrieval process can be significantly accelerated with fast Hamming distance computation, and meanwhile the storage cost can be reduced greatly by the binary embedding. The authors introduce the categorization of existing multi-modal hashing methods according to various metrics and datasets. The authors also collect recent multi-modal hashing techniques and describe the motivation, objective formulations, and optimization steps for context-aware hashing methods based on the tag-semantics transfer.
"synopsis" may belong to another edition of this title.
Lei Zhu, Ph.D. is a Professor in the School of Information Science and Engineering, Shandong Normal University. He received his B.Eng. and Ph.D. degrees from Wuhan University of Technology and Huazhong University Science and Technology, respectively. He was a Research Fellow at the University of Queensland (2016-2017). His research interests include large-scale multimedia content analysis and retrieval.
Jingjing Li, Ph.D, is a Professor in the School of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC). He received his B.Eng., M.Sc. and Ph.D. degrees from UESTC. His research interests include domain adaptation and zero-shot learning.
Weili Guan received a master degree from National University of Singapore. After that, she joined Hewlett Packard Enterprise in Singapore as a Software Engineer and worked there for several years. She is currently a PhD student with the Faculty of Information Technology, Monash University (Clayton Campus), Australia. Her research interests are multimedia computing and information retrieval. She has authored or co-authored more than 30 papers at first-tier conferences and journals, such as ACM MM, SIGIR, and IEEE TIP.
This book systemically presents key concepts of multi-modal hashing technology, recent advances on large-scale efficient multimedia search and recommendation, and recent achievements in multimedia indexing technology. With the explosive growth of multimedia contents, multimedia retrieval is currently facing unprecedented challenges in both storage cost and retrieval speed. The multi-modal hashing technique can project high-dimensional data into compact binary hash codes. With it, the most time-consuming semantic similarity computation during the multimedia retrieval process can be significantly accelerated with fast Hamming distance computation, and meanwhile the storage cost can be reduced greatly by the binary embedding. The authors introduce the categorization of existing multi-modal hashing methods according to various metrics and datasets. The authors also collect recent multi-modal hashing techniques and describe the motivation, objective formulations, and optimization steps for context-aware hashing methods based on the tag-semantics transfer.
"About this title" may belong to another edition of this title.
FREE shipping from Australia to United Kingdom
Destination, rates & speedsSeller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 399995818
Quantity: 1 available
Seller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-261586
Quantity: 3 available
Seller: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condition: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Seller Inventory # ABNR-277452
Quantity: 1 available
Seller: SMASS Sellers, IRVING, TX, U.S.A.
Condition: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Seller Inventory # ASNT3-277452
Quantity: 1 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. Seller Inventory # 26396414069
Quantity: 1 available
Seller: ALLBOOKS1, Direk, SA, Australia
Seller Inventory # SHUB261586
Quantity: 3 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. Seller Inventory # 18396414079
Quantity: 1 available
Seller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-297090
Quantity: 1 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book systemically presents key concepts of multi-modal hashing technology, recent advances on large-scale efficient multimedia search and recommendation, and recent achievements in multimedia indexing technology. With the explosive growth of multimedia contents, multimedia retrieval is currently facing unprecedented challenges in both storage cost and retrieval speed. The multi-modal hashing technique can project high-dimensional data into compact binary hash codes. With it, the most time-consuming semantic similarity computation during the multimedia retrieval process can be significantly accelerated with fast Hamming distance computation, and meanwhile the storage cost can be reduced greatly by the binary embedding. The authors introduce the categorization of existing multi-modal hashing methods according to various metrics and datasets. The authors also collect recent multi-modal hashing techniques and describe themotivation, objective formulations, and optimization steps for context-aware hashing methods based on the tag-semantics transfer. 224 pp. Englisch. Seller Inventory # 9783031372902
Quantity: 2 available
Seller: ALLBOOKS1, Direk, SA, Australia
Seller Inventory # SHUB297090
Quantity: 1 available