This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used? Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.
Topics and features:
Although this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations “beyond” the sole computing experience.
"synopsis" may belong to another edition of this title.
Although it is widely recognized that analyzing large volumes of data by intelligent methods may provide highly valuable insights, the practical success of data science has led to the development of a sometimes confusing variety of methods, approaches and views.
This practical textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used? Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:
Although this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations “beyond” the sole computing experience.
"About this title" may belong to another edition of this title.
£ 9.27 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations 'beyond' the sole computing experience. 213 pp. Englisch. Seller Inventory # 9783031190766
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations 'beyond' the sole computing experience. Seller Inventory # 9783031190766
Quantity: 1 available
Seller: moluna, Greven, Germany
Kartoniert / Broschiert. Condition: New. Seller Inventory # 1407956550
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand. Seller Inventory # 394321261
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 2023rd edition NO-PA16APR2015-KAP. Seller Inventory # 26402088626
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND. Seller Inventory # 18402088632
Quantity: 4 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. Neuware -This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations ¿beyond¿ the sole computing experience.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 228 pp. Englisch. Seller Inventory # 9783031190766
Quantity: 2 available