This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.
Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.
"synopsis" may belong to another edition of this title.
Antonio Lepore is an Associate Professor of Statistics for Experimental and Technological Research (SECS-S/02) in the Department of Industrial Engineering of the University of Naples Federico II.
His research interests and publications in international journals focus on the use of statistical methods for the analysis and monitoring of functional data aimed at the interpretation of complex data coming from high-frequency multi-sensor data acquisition systems.
He is a member of the ENBIS (European Network for Business and Industrial Statistics) and SIS (the Italian Statistical Society).
Biagio Palumbo is an Associate Professor of Statistics for Experimental and Technological Research (SECS-S/02) in the Department of Industrial Engineering of the University of Naples Federico II and President Elect of the European Network for Business and Industrial Statistics (ENBIS).
His research interests are in interpretable statistical learning techniques for industrial engineering and, in particular, for the monitoring of complex data coming from high-frequency multi-sensor acquisition systems and for optimization of manufacturing processes.
He is member of the Italian Statistical Society, the American Society for Quality (ASQ), and the Italian Association of Mechanical Technology.
Jean-Michel Poggi is a Professor of Statistics at Université Paris Cité and a member of the Lab. Maths Orsay (LMO) at Université Paris-Saclay, in France.
His research interests are in nonparametric time series, wavelets, tree-based methods (CART, Random Forests, Boosting) and applied statistics. His work combines theoretical and practical contributions with industrial applications (mainly environment and energy) and software development.
He is Associate Editor of three journals: the Journal of Statistical Software (JSS), Advances in Data Analysis and Classification (ADAC) and the Journal of Data Science, Statistics, and Visualisation (JDSSV).
He is President of the European Network for Business and Industrial Statistics (ENBIS).
This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.
Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.
"About this title" may belong to another edition of this title.
£ 7.58 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: Buchpark, Trebbin, Germany
Condition: Hervorragend. Zustand: Hervorragend | Seiten: 132 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 40726874/1
Quantity: 1 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9783031124013
Quantity: 10 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9783031124013_new
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples. 132 pp. Englisch. Seller Inventory # 9783031124013
Quantity: 2 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9783031124013
Quantity: Over 20 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples. Seller Inventory # 9783031124013
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and indu. Seller Inventory # 668447235
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand. Seller Inventory # 401165851
Quantity: 4 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. 1st ed. 2022 edition NO-PA16APR2015-KAP. Seller Inventory # 26396292548
Quantity: 4 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 130 pages. 9.25x6.10x0.28 inches. In Stock. Seller Inventory # x-3031124014
Quantity: 2 available