Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data.
Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems.
The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation.
The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.
"synopsis" may belong to another edition of this title.
Jérôme Idier was born in France in 1966. He received the diploma degree in electrical engineering from the Ecole Superieure d'Electricité, Gif-sur-Yvette, France, in 1988, the Ph.D. degree in physics from the Universite de Paris-Sud, Orsay, France, in 1991, and the HDR (Habilitation a diriger des recherches) from the same university in 2001. Since 1991, he is a full time researcher at CNRS (Centre National de la Recherche Scientifique). He has been with the Laboratoire des Signaux et Systemes from 1991 to 2002, and with IRCCyN (Institut de Recherches en Cybernetique de Nantes (IRCCyN) since september 2002.
His major scientific interest is in statistical approaches to inverse problems for signal and image processing. More specifically, he studies probabilistic modeling, inference and optimization issues yielded by data processing problems such as denoising, deconvolution, spectral analysis, reconstruction from projections. The investigated applications are mainly non destructive testing, astronomical imaging and biomedical signal processing, and also radar imaging and geophysics. Dr Idier has been involved in joint research programs with several specialized research centers: EDF (Electricite de France), CEA (Commissariat a l'Energie Atomique), CNES (Centre National d'Etudes Spatiales), ONERA (Office National d'Etudes et de Recherches Aerospatiales), Loreal, Thales, Schlumberger.
Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data.
Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems.
The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation.
The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.
Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data.
Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems.
The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation.
The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.
"About this title" may belong to another edition of this title.
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 5510669-n
Seller: INDOO, Avenel, NJ, U.S.A.
Condition: New. Seller Inventory # 9781848210325
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 5510669
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 5510669
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 5510669-n
Quantity: Over 20 available
Seller: Ubiquity Trade, Miami, FL, U.S.A.
Condition: New. Brand new! Please provide a physical shipping address. Seller Inventory # 9781848210325
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. Editor(s): Idier, Jerome. Series: ISTE. Num Pages: 392 pages, Illustrations. BIC Classification: MMP; PBT; UYAM; UYT. Category: (UP) Postgraduate, Research & Scholarly. Dimension: 239 x 158 x 25. Weight in Grams: 704. . 2008. . . . . Seller Inventory # V9781848210325
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its. Seller Inventory # 597090958
Quantity: Over 20 available
Seller: Kennys Bookstore, Olney, MD, U.S.A.
Condition: New. Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. Editor(s): Idier, Jerome. Series: ISTE. Num Pages: 392 pages, Illustrations. BIC Classification: MMP; PBT; UYAM; UYT. Category: (UP) Postgraduate, Research & Scholarly. Dimension: 239 x 158 x 25. Weight in Grams: 704. . 2008. . . . . Books ship from the US and Ireland. Seller Inventory # V9781848210325