Perform time series forecasts, linear prediction, and data segmentation with no-code Excel machine learning
Data Forecasting and Segmentation Using Microsoft Excel guides you through basic statistics to test whether your data can be used to perform regression predictions and time series forecasts. The exercises covered in this book use real-life data from Kaggle, such as demand for seasonal air tickets and credit card fraud detection.
You'll learn how to apply the grouping K-means algorithm, which helps you find segments of your data that are impossible to see with other analyses, such as business intelligence (BI) and pivot analysis. By analyzing groups returned by K-means, you'll be able to detect outliers that could indicate possible fraud or a bad function in network packets.
By the end of this Microsoft Excel book, you'll be able to use the classification algorithm to group data with different variables. You'll also be able to train linear and time series models to perform predictions and forecasts based on past data.
This book is for data and business analysts as well as data science professionals. MIS, finance, and auditing professionals working with MS Excel will also find this book beneficial.
"synopsis" may belong to another edition of this title.
Fernando Roque has 24 years of experience working with statistics for quality control and financial risk assessment of projects since planning, budgeting, and execution. Fernando works applying python k-means and time-series machine-learning algorithms using vegetable activity (NDVI) drones’ images to find the crop´s region with more resilience to droughts. He also applies time-series and k-means for supply chain management (logistics) and inventory planning for seasonal demand.
"About this title" may belong to another edition of this title.
£ 4.45 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: BooksRun, Philadelphia, PA, U.S.A.
Paperback. Condition: Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Seller Inventory # 1803247738-11-1
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 44477139-n
Quantity: Over 20 available
Seller: Chiron Media, Wallingford, United Kingdom
PF. Condition: New. Seller Inventory # 6666-IUK-9781803247731
Quantity: 10 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781803247731_new
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781803247731
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 44477139
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Seller Inventory # C9781803247731
Quantity: Over 20 available
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781803247731
Quantity: Over 20 available
Seller: Rarewaves.com UK, London, United Kingdom
Paperback. Condition: New. Perform time series forecasts, linear prediction, and data segmentation with no-code Excel machine learningKey FeaturesSegment data, regression predictions, and time series forecasts without writing any codeGroup multiple variables with K-means using Excel plugin without programmingBuild, validate, and predict with a multiple linear regression model and time series forecastsBook DescriptionData Forecasting and Segmentation Using Microsoft Excel guides you through basic statistics to test whether your data can be used to perform regression predictions and time series forecasts. The exercises covered in this book use real-life data from Kaggle, such as demand for seasonal air tickets and credit card fraud detection.You'll learn how to apply the grouping K-means algorithm, which helps you find segments of your data that are impossible to see with other analyses, such as business intelligence (BI) and pivot analysis. By analyzing groups returned by K-means, you'll be able to detect outliers that could indicate possible fraud or a bad function in network packets.By the end of this Microsoft Excel book, you'll be able to use the classification algorithm to group data with different variables. You'll also be able to train linear and time series models to perform predictions and forecasts based on past data.What you will learnUnderstand why machine learning is important for classifying data segmentationFocus on basic statistics tests for regression variable dependencyTest time series autocorrelation to build a useful forecastUse Excel add-ins to run K-means without programmingAnalyze segment outliers for possible data anomalies and fraudBuild, train, and validate multiple regression models and time series forecastsWho this book is forThis book is for data and business analysts as well as data science professionals. MIS, finance, and auditing professionals working with MS Excel will also find this book beneficial. Seller Inventory # LU-9781803247731
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Seller Inventory # I-9781803247731
Quantity: Over 20 available