In today's world, we are increasingly exposed to the words "machine learning" (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it. An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authors Provide a systematic and rigorous introduction to supervised, unsupervised and reinforcement learning by establishing essential definitions and theorems. Dive into various types of neural networks, including artificial nets, convolutional nets, recurrent nets and recurrent reinforcement learning. Summarize key contents of each section in the tables as a cheat sheet. Include ample examples of financial applications. Showcase how to tackle an exemplar ML project on financial data end-to-end. Provide a GitHub repository https://github.com/deepintomlf/mlfbook.git that contains supplementary Python codes of all methods/examples. Featured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!
"synopsis" may belong to another edition of this title.
In today's world, we are increasingly exposed to the words "machine learning" (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it.
An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authors
Provide a systematic and rigorous introduction to supervised, unsupervised and reinforcement learning by establishing essential definitions and theorems.
Dive into various types of neural networks, including artificial nets, convolutional nets, recurrent nets and recurrent reinforcement learning.
Summarize key contents of each section in the tables as a cheat sheet.
Include ample examples of financial applications.
Showcase how to tackle an exemplar ML project on financial data end-to-end.
Supplement Python codes of all the methods/examples in a GitHub repository.
Featured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!
The Python codes contained within An Introduction to Machine Learning in Quantitative Finance have been made publicly available on the author's GitHub: https: //github.com/deepintomlf/mlfbook.git
"About this title" may belong to another edition of this title.
Seller: ZBK Books, Carlstadt, NJ, U.S.A.
Condition: good. Fast & Free Shipping â" Good condition with a solid cover and clean pages. Shows normal signs of use such as light wear or a few marks highlighting, but overall a well-maintained copy ready to enjoy. Supplemental items like CDs or access codes may not be included. Seller Inventory # ZWV.1786349647.G
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2912160172955
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 42293022-n
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9781786349644
Seller: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # GB-9781786349644
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # GB-9781786349644
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 42293022
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. In today's world, we are increasingly exposed to the words 'machine learning' (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it.An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authorsFeatured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!The Python codes contained within An Introduction to Machine Learning in Quantitative Finance have been made publicly available on the author's GitHub: git In today's world, we are increasingly exposed to the words "machine learning" (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781786349644
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781786349644_new
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 42293022-n
Quantity: Over 20 available