"synopsis" may belong to another edition of this title.
Krishnendu Chaudhury is a deep learning and computer vision expert with decade-long stints at both Google and Adobe Systems. He is presently CTO and co-founder of Drishti Technologies. He has a PhD in computer science from the University of Kentucky at Lexington.
The mathematical paradigms that underlie deep learning typically start out as hard-to-read academic papers, often leaving engineers in the dark about how their models actually function. Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. Written by deep learning expert Krishnendu Chaudhury, you'll peer inside the “black box” to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications.
"About this title" may belong to another edition of this title.
FREE shipping within United Kingdom
Destination, rates & speedsSeller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 44326061
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 44326061-n
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. New copy - Usually dispatched within 4 working days. 1156. Seller Inventory # B9781617296482
Quantity: 1 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # DB-9781617296482
Quantity: 1 available
Seller: Speedyhen, London, United Kingdom
Condition: NEW. Seller Inventory # NW9781617296482
Quantity: 2 available
Seller: Wegmann1855, Zwiesel, Germany
Taschenbuch. Condition: Neu. Neuware -Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. YouGÇÖll peer inside the GÇ£black boxGÇ¥ to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. Seller Inventory # 9781617296482
Quantity: 1 available
Seller: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. Neuware -Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. YouGÇÖll peer inside the GÇ£black boxGÇ¥ to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. 552 pp. Englisch. Seller Inventory # 9781617296482
Quantity: 1 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. Neuware -Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. YouGÇÖll peer inside the GÇ£black boxGÇ¥ to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. 552 pp. Englisch. Seller Inventory # 9781617296482
Quantity: 1 available
Seller: CitiRetail, Stevenage, United Kingdom
Paperback. Condition: new. Paperback. The mathematical paradigms that underlie deep learning typically start out as hard-to-read academic papers, often leaving engineers in the dark about how their models actually function. Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. Written by deep learning expert Krishnendu Chaudhury, you'll peer inside the black box to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. about the technology It's important to understand how your deep learning models work, both so that you can maintain them efficiently and explain them to other stakeholders. Learning mathematical foundations and neural network architecture can be challenging, but the payoff is big. You'll be free from blind reliance on pre-packaged DL models and able to build, customize, and re-architect for your specific needs. And when things go wrong, you'll be glad you can quickly identify and fix problems. about the book Math and Architectures of Deep Learning sets out the foundations of DL in a way that's both useful and accessible to working practitioners. Each chapter explores a new fundamental DL concept or architectural pattern, explaining the underpinning mathematics and demonstrating how they work in practice with well-annotated Python code. You'll start with a primer of basic algebra, calculus, and statistics, working your way up to state-of-the-art DL paradigms taken from the latest research. By the time you're done, you'll have a combined theoretical insight and practical skills to identify and implement DL architecture for almost any real-world challenge. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9781617296482
Quantity: 1 available
Seller: Chiron Media, Wallingford, United Kingdom
Paperback. Condition: New. Seller Inventory # 6666-GRD-9781617296482
Quantity: 2 available