This book focuses on the use of formal methods in order to guarantee the correctness of real-time systems. For this purpose, the formal framework Equinox is introduced, which allows the specification, modeling, verification and runtime analysis of real-time systems. New sophisticated methods allow a formally verifiable design, development and realization of real-time systems directly out of synchronous languages. This enables for the first time a bridging between industrial real-time descriptions and formal real-time verification. Timed Kripke structures are introduced as formal models, in order to allow abstractions in real-time systems, without loss of quantitative properties. The ability of modeling non-interruptible processes and atomic timed actions enables also the low-level verification of real-time systems. The new temporal logic JCTL has been developed as a real-time extension of the widely used logic CTL. Overcoming the problems of other real-time logics, JCTL is directly defined on timed Kripke structures and allows the use of established symbolic techniques. In contrast to other approaches, these methods enable the direct generation of a final formal model without parallel composition of single sub-models, avoiding several known problems, like state space explosion, or deadlocks and timelocks. An exact and detailed low-level runtime analysis is introduced, which in combination with the modeling capabilities of timed Kripke structures enables for the first time the low-level verification of real-time systems.
"synopsis" may belong to another edition of this title.
This book focuses on the use of formal methods in order to guarantee the correctness of real-time systems. For this purpose, the formal framework Equinox is introduced, which allows the specification, modeling, verification and runtime analysis of real-time systems. New sophisticated methods allow a formally verifiable design, development and realization of real-time systems directly out of synchronous languages. This enables for the first time a bridging between industrial real-time descriptions and formal real-time verification. Timed Kripke structures are introduced as formal models, in order to allow abstractions in real-time systems, without loss of quantitative properties. The ability of modeling non-interruptible processes and atomic timed actions enables also the low-level verification of real-time systems. The new temporal logic JCTL has been developed as a real-time extension of the widely used logic CTL. Overcoming the problems of other real-time logics, JCTL is directly defined on timed Kripke structures and allows the use of established symbolic techniques. In contrast to other approaches, these methods enable the direct generation of a final formal model without parallel composition of single sub-models, avoiding several known problems, like state space explosion, or deadlocks and timelocks. An exact and detailed low-level runtime analysis is introduced, which in combination with the modeling capabilities of timed Kripke structures enables for the first time the low-level verification of real-time systems.
"About this title" may belong to another edition of this title.
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 202. Seller Inventory # 26131689021
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 202 25:B&W 5.83 x 8.27 in or 210 x 148 mm (A5) Perfect Bound on White w/Gloss Lam. Seller Inventory # 128898530
Seller: Mispah books, Redhill, SURRE, United Kingdom
paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA82315860341386
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 202. Seller Inventory # 18131689015