An Introduction to Data Science is an easy-to-read, gentle introduction for advanced undergraduate, certificate, and graduate students coming from a wide range of backgrounds into the world of data science. After introducing the basic concepts of data science, the book builds on these foundations to explain data science techniques using the R programming language and RStudio® from the ground up. Short chapters allow instructors to group concepts together for a semester course and provide students with manageable amounts of information for each concept. By taking students systematically through the R programming environment, the book takes the fear out of data science and familiarizes students with the environment so they can be successful when performing advanced functions.
The authors cover statistics from a conceptual standpoint, focusing on how to use and interpret statistics, rather than the math behind the statistics. This text then demonstrates how to use data effectively and efficiently to construct models, predict outcomes, visualize data, and make decisions. Accompanying digital resources provide code and datasets for instructors and learners to perform a wide range of data science tasks.
"synopsis" may belong to another edition of this title.
Jeffrey S. Saltz is an Associate Professor at Syracuse University in the School of Information Studies and Director of the school′s Master′s of Science program in Applied Data Science. His research and teaching focus on helping organizations leverage information technology and data for competitive advantage. Specifically, his current research focuses on the socio-technical aspects of data science projects, such as how to coordinate and manage data science teams. In order to stay connected to the “real world”, Dr. Saltz consults with clients ranging from professional football teams to Fortune 500 organizations. Prior to becoming a professor, Dr. Saltz′s two decades of industry experience focused on leveraging emerging technologies and data analytics to deliver innovative business solutions. In his last corporate role, at JPMorgan Chase, he reported to the firm′s Chief Information Officer and drove technology innovation across the organization. Jeff also held several other key technology management positions at the company, including CTO and Chief Information Architect. He also served as Chief Technology Officer and Principal Investor at Goldman Sachs, where he helped incubate technology start-ups. He started his career as a programmer, project leader and consulting engineer with Digital Equipment Corp. Dr. Saltz holds a B.S. degree in computer science from Cornell University, an M.B.A. from The Wharton School at the University of Pennsylvania, and a PhD in Information Systems from the New Jersey Institute of Technology.
Jeffrey M. Stanton, Ph.D. is a Professor at Syracuse University in the School of Information Studies. Dr. Stanton’s research focuses on the impacts of machine learning on organizations and individuals. He is the author of Reasoning with Data (2017), an introductory statistics textbook. Stanton has also published many scholarly articles in peer-reviewed behavioral science journals, such as the Journal of Applied Psychology, Personnel Psychology, and Human Performance. His articles also appear in Journal of Computational Science Education, Computers and Security, Communications of the ACM, Computers in Human Behavior, the International Journal of Human-Computer Interaction, Information Technology and People, the Journal of Information Systems Education, the Journal of Digital Information, Surveillance and Society, and Behaviour & Information Technology. He also has published numerous book chapters on data science, privacy, research methods, and program evaluation. Dr. Stanton′s research has been supported through 19 grants and supplements including the National Science Foundation’s CAREER award. Before getting his PhD, Stanton was a software developer who worked at startup companies in the publishing and professional audio industries. He holds a bachelor′s degree in Computer Science from Dartmouth College, and a master′s and Ph.D. in Psychology from the University of Connecticut.
An Introduction to Data Science is an easy-to-read data science textbook for those with no prior coding knowledge. It features exercises at the end of each chapter, author-generated tables and visualizations, and R code examples throughout.
"About this title" may belong to another edition of this title.
Seller: World of Books (was SecondSale), Montgomery, IL, U.S.A.
Condition: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00099675651
Seller: HPB-Red, Dallas, TX, U.S.A.
paperback. Condition: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Seller Inventory # S_456266578
Seller: Textbooks_Source, Columbia, MO, U.S.A.
paperback. Condition: Good. First Edition. Ships in a BOX from Central Missouri! May not include working access code. Will not include dust jacket. Has used sticker(s) and some writing or highlighting. UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Seller Inventory # 002084457U
Seller: Textbooks_Source, Columbia, MO, U.S.A.
paperback. Condition: New. First Edition. Ships in a BOX from Central Missouri! UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Seller Inventory # 002084457N
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 29395807
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 275 pages. 8.75x7.25x0.50 inches. In Stock. This item is printed on demand. Seller Inventory # __150637753X
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 29395807-n
Seller: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condition: new. Paperback. An Introduction to Data Science is an easy-to-read, gentle introduction for advanced undergraduate, and graduate students coming from a wide range of backgrounds into the world of data science. After introducing the basic concepts of data science, the book builds on these foundations to explain data science techniques using the R programming language and RStudio (R) from the ground up. Short chapters allow instructors to group concepts together for a semester course and provide students with manageable amounts of information for each concept. By taking students systematically through the R programming environment, the book takes the fear out of data science and familiarizes students with the environment so they can be successful when performing advanced functions. The authors cover statistics from a conceptual standpoint, focusing on how to use and interpret statistics, rather than the maths behind the statistics. This text then demonstrates how to use data effectively and efficiently to construct models, predict outcomes, visualize data, and make decisions. AncillariesAccompanying digital resources provide code and datasets for instructors and learners to perform a wide range of data science tasks. An Introduction to Data Science is an easy-to-read data science textbook for those with no prior coding knowledge. It features exercises at the end of each chapter, author-generated tables and visualizations, and R code examples throughout. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781506377537
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 29395807-n
Quantity: 4 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. New copy - Usually dispatched within 4 working days. Seller Inventory # B9781506377537
Quantity: 3 available