Since the writing of NASA/SP-6105 in 1995, systems engineering at the National Aeronautics and Space Administration (NASA), within national and international standard bodies, and as a discipline has undergone rapid evolution. Changes include implementing standards in the International Organization for Standardization (ISO) 9000, the use of Carnegie Mellon Software Engineering Institute's Capability Maturity Model(r) Integration (CMMI(r)) to improve development and delivery of products, and the impacts of mission failures. Lessons learned on systems engineering were documented in reports such as those by the NASA Integrated Action Team (NIAT), the Columbia Accident Investigation Board (CAIB), and the follow-on Diaz Report. Out of these efforts came the NASA Office of the Chief Engineer (OCE) initiative to improve the overall Agency systems engineering infrastructure and capability for the efficient and effective engineering of NASA systems, to produce quality products, and to achieve mission success. In addition, Agency policy and requirements for systems engineering have been established. This handbook update is a part of the OCE-sponsored Agency wide systems engineering initiative. In 1995, SP-6105 was initially published to bring the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and the NASA environment. This revision of SP-6105 maintains that original philosophy while updating the Agency's systems engineering body of knowledge, providing guidance for insight into current best Agency practices, and aligning the handbook with the new Agency systems engineering policy. The update of this handbook was twofold: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. The approach provided the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engin
"synopsis" may belong to another edition of this title.
President Dwight D. Eisenhower established the National Aeronautics and Space Administration in 1958, partially in response to the Soviet Union's launch of the first artificial satellite the previous year. NASA grew out of the National Advisory Committee on Aeronautics (NACA), which had been researching flight technology for more than 40 years. President John F. Kennedy focused NASA and the nation on sending astronauts to the moon by the end of the 1960s. Through the Mercury and Gemini projects, NASA developed the technology and skills it needed for the journey. On July 20, 1969, Neil Armstrong and Buzz Aldrin became the first of 12 men to walk on the moon, meeting Kennedy's challenge. Meanwhile, NASA was continuing the aeronautics research pioneered by NACA. It also conducted purely scientific research and worked on developing applications for space technology, combining both pursuits in developing the first weather and communications satellites. After Apollo, NASA focused on creating a reusable ship to provide regular access to space: the space shuttle. First launched in 1981, the space shuttle flew more than 130 successful missions before being retired in 2011. In 2000, the United States and Russia established permanent human presence in space aboard the International Space Station, a multinational project representing the work of 15 nations. NASA also has continued its scientific research. In 1997, Mars Pathfinder became the first in a fleet of spacecraft that have been exploring Mars, as we try to determine whether life ever existed there. The Terra, Aqua and Aura Earth Observing System satellites are flagships of a different fleet, this one in Earth orbit, designed to help us understand how our home world is changing. NASA's aeronautics teams are focused on improving aviation, so it meets the explosive growth in global demand for air services. Throughout its history, NASA has conducted or funded research that has led to numerous improvements to life here on Earth.
"About this title" may belong to another edition of this title.
£ 1.98 shipping within U.S.A.
Destination, rates & speedsSeller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 22127823-n
Quantity: Over 20 available
Seller: California Books, Miami, FL, U.S.A.
Condition: New. Print on Demand. Seller Inventory # I-9781502975874
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 22127823
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 22127823
Quantity: Over 20 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 22127823-n
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 835. Seller Inventory # C9781502975874
Quantity: Over 20 available
Seller: CitiRetail, Stevenage, United Kingdom
Paperback. Condition: new. Paperback. Since the writing of NASA/SP-6105 in 1995, systems engineering at the National Aeronautics and Space Administration (NASA), within national and international standard bodies, and as a discipline has undergone rapid evolution. Changes include implementing standards in the International Organization for Standardization (ISO) 9000, the use of Carnegie Mellon Software Engineering Institute's Capability Maturity Model(R) Integration (CMMI(R)) to improve development and delivery of products, and the impacts of mission failures. Lessons learned on systems engineering were documented in reports such as those by the NASA Integrated Action Team (NIAT), the Columbia Accident Investigation Board (CAIB), and the follow-on Diaz Report. Out of these efforts came the NASA Office of the Chief Engineer (OCE) initiative to improve the overall Agency systems engineering infrastructure and capability for the efficient and effective engineering of NASA systems, to produce quality products, and to achieve mission success. In addition, Agency policy and requirements for systems engineering have been established. This handbook update is a part of the OCE-sponsored Agency wide systems engineering initiative. In 1995, SP-6105 was initially published to bring the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and the NASA environment. This revision of SP-6105 maintains that original philosophy while updating the Agency's systems engineering body of knowledge, providing guidance for insight into current best Agency practices, and aligning the handbook with the new Agency systems engineering policy. The update of this handbook was twofold: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. The approach provided the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engineering process. The attempt is to communicate principles of good practice as well as alternative approaches rather than specify a particular way to accomplish a task. The result embodied in this handbook is a top-level implementation approach on the practice of systems engineering unique to NASA. The material for updating this handbook was drawn from many different sources, including NASA procedural requirements, field center systems engineering handbooks and processes, as well as non-NASA systems engineering textbooks and guides. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9781502975874
Quantity: 1 available