The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several "subnetworks" (modules), which may perform the same or re lated tasks, and then use an "appropriate" method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of "lumped" or "monolithic" networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network.
"synopsis" may belong to another edition of this title.
This book presents a unified methodology for designing modular neural networks. A family of online algorithms for time series classification, prediction and identification are developed; and a rigorous mathematical analysis of their properties is provided. Case studies involving a number of real-world problems are also presented. Finally, an overview of the modular neural networks literature, including coverage of theoretical and experimental analysis, is provided. Predictive Modular Neural Networks: Applications to Time Series is an important reference work for engineers, computer scientists, and other researchers working in time series analysis, neural networks, control engineering, data mining and other intelligent and decision support areas. The book will also be of interest to researchers in biological and medical informatics.
"About this title" may belong to another edition of this title.
£ 1.97 shipping within U.S.A.
Destination, rates & speedsSeller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9781461375401
Quantity: 2 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Mar2716030033993
Quantity: Over 20 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condition: new. Paperback. The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several "subnetworks" (modules), which may perform the same or re lated tasks, and then use an "appropriate" method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of "lumped" or "monolithic" networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network. The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9781461375401
Quantity: 1 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781461375401_new
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 19494843-n
Quantity: 15 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The subject of this book is predictive modular neural networks and their ap plication to time series problems: classification, prediction and identification. The intended audience is researchers and graduate students in the fields of neural networks, computer science, statistical pattern recognition, statistics, control theory and econometrics. Biologists, neurophysiologists and medical engineers may also find this book interesting. In the last decade the neural networks community has shown intense interest in both modular methods and time series problems. Similar interest has been expressed for many years in other fields as well, most notably in statistics, control theory, econometrics etc. There is a considerable overlap (not always recognized) of ideas and methods between these fields. Modular neural networks come by many other names, for instance multiple models, local models and mixtures of experts. The basic idea is to independently develop several 'subnetworks' (modules), which may perform the same or re lated tasks, and then use an 'appropriate' method for combining the outputs of the subnetworks. Some of the expected advantages of this approach (when compared with the use of 'lumped' or 'monolithic' networks) are: superior performance, reduced development time and greater flexibility. For instance, if a module is removed from the network and replaced by a new module (which may perform the same task more efficiently), it should not be necessary to retrain the aggregate network. 332 pp. Englisch. Seller Inventory # 9781461375401
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 19494843
Quantity: 15 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. Series: The Springer International Series in Engineering and Computer Science. Num Pages: 325 pages, biography. BIC Classification: GPJ; PH; URY; UY. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 17. Weight in Grams: 510. . 2012. Softcover reprint of the original 1st ed. 1998. Paperback. . . . . Seller Inventory # V9781461375401
Quantity: 15 available
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 4195669
Quantity: Over 20 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 498. Seller Inventory # C9781461375401
Quantity: Over 20 available