Hamilton-Jacobi equations and other types of partial differential equa tions of the first order are dealt with in many branches of mathematics, mechanics, and physics. These equations are usually nonlinear, and func tions vital for the considered problems are not smooth enough to satisfy these equations in the classical sense. An example of such a situation can be provided by the value function of a differential game or an optimal control problem. It is known that at the points of differentiability this function satisfies the corresponding Hamilton-Jacobi-Isaacs-Bellman equation. On the other hand, it is well known that the value function is as a rule not everywhere differentiable and therefore is not a classical global solution. Thus in this case, as in many others where first-order PDE's are used, there arises necessity to introduce a notion of generalized solution and to develop theory and methods for constructing these solutions. In the 50s-70s, problems that involve nonsmooth solutions of first order PDE's were considered by Bakhvalov, Evans, Fleming, Gel'fand, Godunov, Hopf, Kuznetzov, Ladyzhenskaya, Lax, Oleinik, Rozhdestven ski1, Samarskii, Tikhonov, and other mathematicians. Among the inves tigations of this period we should mention the results of S.N. Kruzhkov, which were obtained for Hamilton-Jacobi equation with convex Hamilto nian. A review of the investigations of this period is beyond the limits of the present book. A sufficiently complete bibliography can be found in [58, 126, 128, 141].
"synopsis" may belong to another edition of this title.
"Subbotin's book is a very valuable addition to the literature."
― Mathematical Reviews
"The book is printed excellently and clearly. The explanations concerning the content are distinguished of high correctness and equipped with numerous examples and illustrations."
― ZAA
"About this title" may belong to another edition of this title.
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781461269205_new
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 332. Seller Inventory # 2697512360
Seller: moluna, Greven, Germany
Condition: New. Seller Inventory # 4189554
Quantity: Over 20 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. 2013. Paperback. . . . . . Seller Inventory # V9781461269205
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 332 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Seller Inventory # 95966327
Quantity: 4 available
Seller: Biblios, Frankfurt am main, HESSE, Germany
Condition: New. PRINT ON DEMAND pp. 332. Seller Inventory # 1897512354
Seller: Kennys Bookstore, Olney, MD, U.S.A.
Condition: New. 2013. Paperback. . . . . . Books ship from the US and Ireland. Seller Inventory # V9781461269205
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Taschenbuch. Condition: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Hamilton-Jacobi equations and other types of partial differential equa tions of the first order are dealt with in many branches of mathematics, mechanics, and physics. These equations are usually nonlinear, and func tions vital for the considered problems are not smooth enough to satisfy these equations in the classical sense. An example of such a situation can be provided by the value function of a differential game or an optimal control problem. It is known that at the points of differentiability this function satisfies the corresponding Hamilton-Jacobi-Isaacs-Bellman equation. On the other hand, it is well known that the value function is as a rule not everywhere differentiable and therefore is not a classical global solution. Thus in this case, as in many others where first-order PDE's are used, there arises necessity to introduce a notion of generalized solution and to develop theory and methods for constructing these solutions. In the 50s-70s, problems that involve nonsmooth solutions of first order PDE's were considered by Bakhvalov, Evans, Fleming, Gel'fand, Godunov, Hopf, Kuznetzov, Ladyzhenskaya, Lax, Oleinik, Rozhdestven ski1, Samarskii, Tikhonov, and other mathematicians. Among the inves tigations of this period we should mention the results of S.N. Kruzhkov, which were obtained for Hamilton-Jacobi equation with convex Hamilto nian. A review of the investigations of this period is beyond the limits of the present book. A sufficiently complete bibliography can be found in [58, 126, 128, 141].Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 332 pp. Englisch. Seller Inventory # 9781461269205
Seller: AHA-BUCH GmbH, Einbeck, Germany
Taschenbuch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - Hamilton-Jacobi equations and other types of partial differential equa tions of the first order are dealt with in many branches of mathematics, mechanics, and physics. These equations are usually nonlinear, and func tions vital for the considered problems are not smooth enough to satisfy these equations in the classical sense. An example of such a situation can be provided by the value function of a differential game or an optimal control problem. It is known that at the points of differentiability this function satisfies the corresponding Hamilton-Jacobi-Isaacs-Bellman equation. On the other hand, it is well known that the value function is as a rule not everywhere differentiable and therefore is not a classical global solution. Thus in this case, as in many others where first-order PDE's are used, there arises necessity to introduce a notion of generalized solution and to develop theory and methods for constructing these solutions. In the 50s-70s, problems that involve nonsmooth solutions of first order PDE's were considered by Bakhvalov, Evans, Fleming, Gel'fand, Godunov, Hopf, Kuznetzov, Ladyzhenskaya, Lax, Oleinik, Rozhdestven ski1, Samarskii, Tikhonov, and other mathematicians. Among the inves tigations of this period we should mention the results of S.N. Kruzhkov, which were obtained for Hamilton-Jacobi equation with convex Hamilto nian. A review of the investigations of this period is beyond the limits of the present book. A sufficiently complete bibliography can be found in [58, 126, 128, 141]. Seller Inventory # 9781461269205
Seller: Mispah books, Redhill, SURRE, United Kingdom
Paperback. Condition: Like New. Like New. book. Seller Inventory # ERICA80014612692026
Quantity: 1 available