1 Some Facts From Regression Analysis.- 1.1 The Linear Model.- 1.2 More about the Information Matrix.- 1.3 Generalized Versions of the Linear Regression Model.- 1.4 Nonlinear Models.- 2 Convex Design Theory.- 2.1 Optimality Criteria.- 2.2 Some Properties of Optimality Criteria.- 2.3 Continuous Optimal Designs.- 2.4 The Sensitivity Function and Equivalence Theorems.- 2.5 Some Examples.- 2.6 Complements.- 3 Numerical Techniques.- 3.1 First Order Algorithm:D-criterion.- 3.2 First Order Algorithm: The General Case.- 3.3 Finite Sample Size.- 4 Optimal Design under Constraints.- 4.1 Cost Constraints.- 4.2 Constraints for Auxiliary Criteria.- 4.3 Directly Constrained Design Measures.- 5 Special Cases and Applications.- 5.1 Designs for Time-Dependent Models.- 5.2 Regression Models with Random Parameters.- 5.3 Mixed Models and Correlated Observations.- 5.4 Design for "Contaminated" Models.- 5.5 Model Discrimination.- 5.6 Nonlinear Regression.- 5.7 Design in Functional. Spaces.- A Some Results from Matrix Algebra.- B List of Symbols.- References.
"synopsis" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want