MACHINE LEARNING TECHNIQUES AND ANALYTICS FOR CLOUD SECURITY
This book covers new methods, surveys, case studies, and policy with almost all machine learning techniques and analytics for cloud security solutions
The aim of Machine Learning Techniques and Analytics for Cloud Security is to integrate machine learning approaches to meet various analytical issues in cloud security. Cloud security with ML has long-standing challenges that require methodological and theoretical handling. The conventional cryptography approach is less applied in resource-constrained devices. To solve these issues, the machine learning approach may be effectively used in providing security to the vast growing cloud environment. Machine learning algorithms can also be used to meet various cloud security issues, such as effective intrusion detection systems, zero-knowledge authentication systems, measures for passive attacks, protocols design, privacy system designs, applications, and many more. The book also contains case studies/projects outlining how to implement various security features using machine learning algorithms and analytics on existing cloud-based products in public, private and hybrid cloud respectively.
Audience
Research scholars and industry engineers in computer sciences, electrical and electronics engineering, machine learning, computer security, information technology, and cryptography.
"synopsis" may belong to another edition of this title.
Rajdeep Chakraborty obtained his PhD in CSE from the University of Kalyani. He is currently an assistant professor in the Department of Computer Science and Engineering, Netaji Subhash Engineering College, Garia, Kolkata, India. He has several publications in reputed international journals and conferences and has authored a book on hardware cryptography. His field of interest is mainly in cryptography and computer security.
Anupam Ghosh obtained his PhD in Engineering from Jadavpur University. He is currently a professor in the Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata. He has published more than 80 papers in reputed international journals and conferences. His field of interest is mainly in AI, machine learning, deep learning, image processing, soft computing, bioinformatics, IoT, data mining.
Jyotsna Kumar Mandal obtained his PhD in CSE from Jadavpur University He has more than 450 publications in reputed international journals and conferences. His field of interest is mainly in coding theory, data and network security, remote sensing & GIS-based applications, data compression error corrections, information security, watermarking, steganography and document authentication, image processing, visual cryptography, MANET, wireless and mobile computing/security, unify computing, chaos theory, and applications.
This book covers new methods, surveys, case studies, and policy with almost all machine learning techniques and analytics for cloud security solutions
The aim of Machine Learning Techniques and Analytics for Cloud Security is to integrate machine learning approaches to meet various analytical issues in cloud security. Cloud security with ML has long-standing challenges that require methodological and theoretical handling. The conventional cryptography approach is less applied in resource-constrained devices. To solve these issues, the machine learning approach may be effectively used in providing security to the vast growing cloud environment. Machine learning algorithms can also be used to meet various cloud security issues, such as effective intrusion detection systems, zero-knowledge authentication systems, measures for passive attacks, protocols design, privacy system designs, applications, and many more. The book also contains case studies/projects outlining how to implement various security features using machine learning algorithms and analytics on existing cloud-based products in public, private and hybrid cloud respectively.
Audience
Research scholars and industry engineers in computer sciences, electrical and electronics engineering, machine learning, computer security, information technology, and cryptography.
"About this title" may belong to another edition of this title.
FREE shipping within United Kingdom
Destination, rates & speedsSeller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 41464589-n
Quantity: Over 20 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
HRD. Condition: New. New Book. Shipped from UK. Established seller since 2000. Seller Inventory # FW-9781119762256
Quantity: 15 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 41464589
Quantity: Over 20 available
Seller: CitiRetail, Stevenage, United Kingdom
Hardcover. Condition: new. Hardcover. MACHINE LEARNING TECHNIQUES AND ANALYTICS FOR CLOUD SECURITY This book covers new methods, surveys, case studies, and policy with almost all machine learning techniques and analytics for cloud security solutions The aim of Machine Learning Techniques and Analytics for Cloud Security is to integrate machine learning approaches to meet various analytical issues in cloud security. Cloud security with ML has long-standing challenges that require methodological and theoretical handling. The conventional cryptography approach is less applied in resource-constrained devices. To solve these issues, the machine learning approach may be effectively used in providing security to the vast growing cloud environment. Machine learning algorithms can also be used to meet various cloud security issues, such as effective intrusion detection systems, zero-knowledge authentication systems, measures for passive attacks, protocols design, privacy system designs, applications, and many more. The book also contains case studies/projects outlining how to implement various security features using machine learning algorithms and analytics on existing cloud-based products in public, private and hybrid cloud respectively. Audience Research scholars and industry engineers in computer sciences, electrical and electronics engineering, machine learning, computer security, information technology, and cryptography. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9781119762256
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 41464589-n
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Condition: New. Rajdeep Chakraborty obtained his PhD in CSE from the University of Kalyani. He is currently an assistant professor in the Department of Computer Science and Engineering, Netaji Subhash Engineering College, Garia, Kolkata, India. He has several publications . Seller Inventory # 497312605
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781119762256_new
Quantity: Over 20 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 41464589
Quantity: Over 20 available
Seller: SecondSale, Montgomery, IL, U.S.A.
Condition: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Seller Inventory # 00046698098
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 379210960
Quantity: 3 available