An Introduction to Universal Artificial Intelligence provides the formal underpinning of what it means for an agent to act intelligently in an unknown environment. First presented in Universal Algorithmic Intelligence (Hutter, 2000), UAI offers a framework in which virtually all AI problems can be formulated, and a theory of how to solve them. UAI unifies ideas from sequential decision theory, Bayesian inference, and algorithmic information theory to construct AIXI, an optimal reinforcement learning agent that learns to act optimally in unknown environments. AIXI is the theoretical gold standard for intelligent behavior.
The book covers both the theoretical and practical aspects of UAI. Bayesian updating can be done efficiently with context tree weighting, and planning can be approximated by sampling with Monte Carlo tree search. It provides algorithms for the reader to implement, and experimental results to compare against. These algorithms are used to approximate AIXI. The book ends with a philosophical discussion of Artificial General Intelligence: Can super-intelligent agents even be constructed? Is it inevitable that they will be constructed, and what are the potential consequences?
This text is suitable for late undergraduate students. It provides an extensive chapter to fill in the required mathematics, probability, information, and computability theory background. You can also visit the author website: http://www.hutter1.net/ai/uaibook2.htm.
"synopsis" may belong to another edition of this title.
Marcus Hutter is Senior Researcher at DeepMind in London and Professor in the Research School of Computer Science (RSCS) at the Australian National University (ANU) in Canberra, Australia (fulltime till 2019 and honorary since then). He is Chair of the ongoing Human Knowledge Compression Contest. He received a master’s degree in computer science in 1992 from the University of Technology in Munich, Germany, a PhD in theoretical particle physics in 1996, and completed his Habilitation in 2003. He worked as an active software developer for various companies in several areas for many years, before he commenced his academic career in 2000 at the Artificial Intelligence (AI) institute IDSIA in Lugano, Switzerland, where he stayed for six years. Since 2000, he has mainly worked on fundamental questions in AI resulting in over 200 peer-reviewed research publications and his book Universal Artificial Intelligence (Springer, EATCS, 2005). He has served (as PC member, chair, organizer) for numerous conferences, and reviews for major conferences and journals. He has given numerous invited lectures, and his work in AI and statistics was nominated for and received several awards (UAI, IJCAI-JAIR, AGI Kurzweil, Lindley). http://www.hutter1.net/
David Quarel is completing a PhD at the ANU. He holds a BSc in mathematics and MSc in computer science, specialising in artificial intelligence and machine learning. David has several years’ experience in developing course content and distilling complex topics suitable for a wide range of academic audiences, as well as having delivered guest lectures at the ANU, and spent two years as a full-time tutor before starting his PhD.
Elliot Catt is a Research Scientist at DeepMind London and has previously completed a PhD in Universal Artificial Intelligence. He holds a BSc and MSc in mathematics and a PhD in computer science. Elliot has lectured on the topic of Advanced Artificial Intelligence at the ANU and published several pieces of work on the topic of Universal Artificial Intelligence. https://catt.id/
"About this title" may belong to another edition of this title.
FREE shipping within United Kingdom
Destination, rates & speedsFREE shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Basi6 International, Irving, TX, U.S.A.
Condition: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Seller Inventory # ABEJUNE24-321341
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: New. Seller Inventory # 46747023-n
Quantity: Over 20 available
Seller: Speedyhen, London, United Kingdom
Condition: NEW. Seller Inventory # NW9781032607023
Quantity: 1 available
Seller: THE SAINT BOOKSTORE, Southport, United Kingdom
Paperback / softback. Condition: New. New copy - Usually dispatched within 4 working days. 1020. Seller Inventory # B9781032607023
Quantity: 1 available
Seller: GreatBookPricesUK, Woodford Green, United Kingdom
Condition: As New. Unread book in perfect condition. Seller Inventory # 46747023
Quantity: Over 20 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9781032607023_new
Quantity: Over 20 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Seller Inventory # 397611930
Quantity: 3 available
Seller: PBShop.store UK, Fairford, GLOS, United Kingdom
PAP. Condition: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Seller Inventory # L0-9781032607023
Quantity: Over 20 available
Seller: Revaluation Books, Exeter, United Kingdom
Paperback. Condition: Brand New. 416 pages. 9.75x7.00x1.00 inches. In Stock. This item is printed on demand. Seller Inventory # __1032607025
Quantity: 1 available
Seller: CitiRetail, Stevenage, United Kingdom
Paperback. Condition: new. Paperback. An Introduction to Universal Artificial Intelligence provides the formal underpinning of what it means for an agent to act intelligently in an unknown environment. First presented in Universal Algorithmic Intelligence (Hutter, 2000), UAI offers a framework in which virtually all AI problems can be formulated, and a theory of how to solve them. UAI unifies ideas from sequential decision theory, Bayesian inference, and algorithmic information theory to construct AIXI, an optimal reinforcement learning agent that learns to act optimally in unknown environments. AIXI is the theoretical gold standard for intelligent behavior.The book covers both the theoretical and practical aspects of UAI. Bayesian updating can be done efficiently with context tree weighting, and planning can be approximated by sampling with Monte Carlo tree search. It provides algorithms for the reader to implement, and experimental results to compare against. These algorithms are used to approximate AIXI. The book ends with a philosophical discussion of Artificial General Intelligence: Can super-intelligent agents even be constructed? Is it inevitable that they will be constructed, and what are the potential consequences?This text is suitable for late undergraduate students. It provides an extensive chapter to fill in the required mathematics, probability, information, and computability theory background. You can also visit the author website: htm. The book provides a gentle introduction to Universal Artificial Intelligence (UAI), a theory that provides a formal underpinning of what it means for an agent to act intelligently in a general class of environments. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Seller Inventory # 9781032607023
Quantity: 1 available