Many problems of the engineering sciences, physics, and mathematics lead to con volution equations and their various modifications. Convolution equations on a half-line can be studied by having recourse to the methods and results of the theory of Toeplitz and Wiener-Hopf operators. Convolutions by integrable kernels have continuous symbols and the Cauchy singular integral operator is the most prominent example of a convolution operator with a piecewise continuous symbol. The Fredholm theory of Toeplitz and Wiener-Hopf operators with continuous and piecewise continuous (matrix) symbols is well presented in a series of classical and recent monographs. Symbols beyond piecewise continuous symbols have discontinuities of oscillating type. Such symbols emerge very naturally. For example, difference operators are nothing but convolution operators with almost periodic symbols: the operator defined by (A
"synopsis" may belong to another edition of this title.
Bottcher of the Technical University of Chemnitz, Germany
"About this title" may belong to another edition of this title.
(No Available Copies)
Search Books: Create a WantCan't find the book you're looking for? We'll keep searching for you. If one of our booksellers adds it to AbeBooks, we'll let you know!
Create a Want