Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski's book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo rem, a classical result from field theory, stating that in every finite dimen sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very useful for doing arithmetic computations, at present, the algorithmic and explicit construction of (particular) such bases has become one of the major research topics in Finite Field Theory.
"synopsis" may belong to another edition of this title.
Finite Fields Over the years, normal bases in finite fields have been proved to be very useful for doing arithmetic computations. In addition to interest in arbitrary normal bases, this book examines a special class of normal bases whose existence has only been settled more recently. It serves as a reference for researchers in finite fields.
The central topic of this work is the normal basis theorem, a classical result from field theory. In the last two decades, normal bases in finite fields have been proved to be very useful for doing arithmetic computations. At present, the algorithmic and explicit construction of such bases has become one of the major research topics in finite field theory. Moreover, the search for such bases also led to a better theoretical understanding of the structure of finite fields. In addition to interest in arbitrary normal bases, this volume examines a special class of normal bases whose existence has only been settled more recently. The main problems considered in the present work are the characterization, the enumeration, and the explicit construction of completely free elements in arbitrary finite dimensional extensions over finite fields. Up to now, there is little work on whether the universal property of a completely free element can be used to accelerate arithmetic computations in finite fields. Therefore, the present work belongs to constructive algebra and constitutes a contribution to the theory of finite fields.
"About this title" may belong to another edition of this title.
£ 8.62 shipping from Germany to United Kingdom
Destination, rates & speeds£ 14.83 shipping from U.S.A. to United Kingdom
Destination, rates & speedsSeller: Buchpark, Trebbin, Germany
Condition: Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 3019904/203
Quantity: 1 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: New. Seller Inventory # 758194-n
Quantity: 15 available
Seller: Best Price, Torrance, CA, U.S.A.
Condition: New. SUPER FAST SHIPPING. Seller Inventory # 9780792398516
Quantity: 2 available
Seller: GreatBookPrices, Columbia, MD, U.S.A.
Condition: As New. Unread book in perfect condition. Seller Inventory # 758194
Quantity: 15 available
Seller: Grand Eagle Retail, Mason, OH, U.S.A.
Hardcover. Condition: new. Hardcover. The central topic of this work is the normal basis theorem, a classical result from field theory. In the last two decades, normal bases in finite fields have been proved to be very useful for doing arithmetic computations. At present, the algorithmic and explicit construction of such bases has become one of the major research topics in finite field theory. Moreover, the search for such bases also led to a better theoretical understanding of the structure of finite fields. In addition to interest in arbitrary normal bases, this volume examines a special class of normal bases whose existence has only been settled more recently. The main problems considered in the present work are the characterization, the enumeration, and the explicit construction of completely free elements in arbitrary finite dimensional extensions over finite fields. Up to now, there is little work on whether the universal property of a completely free element can be used to accelerate arithmetic computations in finite fields. Therefore, the present work belongs to constructive algebra and constitutes a contribution to the theory of finite fields. The central topic of the present text is the famous Normal Basis Theo rem, a classical result from field theory, stating that in every finite dimen sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Seller Inventory # 9780792398516
Quantity: 1 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptograph. Seller Inventory # 458444000
Quantity: Over 20 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2416190186250
Quantity: Over 20 available
Seller: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Ireland
Condition: New. Over the years, normal bases in finite fields have been proved to be very useful for doing arithmetic computations. In addition to interest in arbitrary normal bases, this book examines a special class of normal bases whose existence has only been settled more recently. It serves as a reference for researchers in finite fields. Series: The Springer International Series in Engineering and Computer Science. Num Pages: 171 pages, biography. BIC Classification: PBF. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 12. Weight in Grams: 980. . 1996. Hardback. . . . . Seller Inventory # V9780792398516
Quantity: 15 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Neuware - Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski's book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo rem, a classical result from field theory, stating that in every finite dimen sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very useful for doing arithmetic computations, at present, the algorithmic and explicit construction of (particular) such bases has become one of the major research topics in Finite Field Theory. Seller Inventory # 9780792398516
Quantity: 2 available
Seller: Kennys Bookstore, Olney, MD, U.S.A.
Condition: New. Over the years, normal bases in finite fields have been proved to be very useful for doing arithmetic computations. In addition to interest in arbitrary normal bases, this book examines a special class of normal bases whose existence has only been settled more recently. It serves as a reference for researchers in finite fields. Series: The Springer International Series in Engineering and Computer Science. Num Pages: 171 pages, biography. BIC Classification: PBF. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 12. Weight in Grams: 980. . 1996. Hardback. . . . . Books ship from the US and Ireland. Seller Inventory # V9780792398516
Quantity: 15 available