This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to· the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date.
"synopsis" may belong to another edition of this title.
This book describes the design and theory of high-accuracy smart temperature sensors in CMOS technology. The book's major triumph is the realization of a smart temperature sensor of such high accuracy that it can be applied without any form of calibration. In addition, the authors provide the reader with an elaborate overview of dynamic offset-cancellation techniques and CMOS bandgap references, which are the basic techniques and building blocks that determine the overall accuracy of CMOS smart temperature sensors. The book's concluding chapters focus on realizations where other aspects like ultra low-design and remote temperature sensing are discussed. "High-Accuracy CMOS Smart Temperature Sensors" is essential reading for anybody with an academic or professional interest in semiconductor design.
"About this title" may belong to another edition of this title.
£ 7.62 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: Buchpark, Trebbin, Germany
Condition: Sehr gut. Zustand: Sehr gut | Seiten: 136 | Sprache: Englisch | Produktart: Bücher. Seller Inventory # 1654750/202
Quantity: 2 available
Seller: Ria Christie Collections, Uxbridge, United Kingdom
Condition: New. In. Seller Inventory # ria9780792372172_new
Quantity: Over 20 available
Seller: moluna, Greven, Germany
Gebunden. Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibrati. Seller Inventory # 5970001
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date. 136 pp. Englisch. Seller Inventory # 9780792372172
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date. Seller Inventory # 9780792372172
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -This book describes the theory and design of high-accuracy CMOS smart temperature sensors. The major topic of the work is the realization of a smart temperature sensor that has an accuracy that is so high that it can be applied without any form of calibration. Integrated in a low-cost CMOS technology, this yields at the publication date of this book one of the most inexpensive intelligent general purpose temperature sensors in the world. The first thermometers could only be read by the human eye. The industrial revolution and the following computerization asked for more intelligent sensors, which could easily communicate to digital computers. This led to the development of integrated temperature sensors that combine a bipolar temperature sensor and an A-to-D converter on the same chip. The implementation in CMOS technology reduces the processing costs to a minimum while having the best-suited technology to increase the (digital) intelligence. The accuracy of conventional CMOS smart temperature sensors is degraded by the offset of the read-out electronics. Calibration of these errors is quite expensive, however, dynamic offset-cancellation techniques can reduce the offset of amplifiers by a factor 100 to 1000 and do not need trimming. Chapter two gives an elaborate description of the different kinds of dynamic offset-cancellation techniques. Also a new technique is introduced called the nested chopper technique. An implementation of a CMOS nested-chopper instrumentation amplifier shows a residual offset of less than lOOn V, which is the best result reported to date.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 136 pp. Englisch. Seller Inventory # 9780792372172
Quantity: 2 available
Seller: Lucky's Textbooks, Dallas, TX, U.S.A.
Condition: New. Seller Inventory # ABLIING23Feb2416190184313
Quantity: Over 20 available
Seller: Books Puddle, New York, NY, U.S.A.
Condition: New. pp. 136. Seller Inventory # 262174083
Quantity: 4 available
Seller: Mispah books, Redhill, SURRE, United Kingdom
Hardcover. Condition: Like New. Like New. book. Seller Inventory # ERICA77307923721746
Quantity: 1 available
Seller: Majestic Books, Hounslow, United Kingdom
Condition: New. Print on Demand pp. 136 Illus. Seller Inventory # 5673820
Quantity: 4 available