The mathematical theory of "open" dynamical systems is a creation of the twentieth century. Its humble beginnings focused on ideas of Laplace transforms applied to linear problems of automatic control and to the analysis and synthesis of electrical circuits. However during the second half of the century, it flowered into a field based on an array of sophisticated mathematical concepts and techniques from algebra, nonlinear analysis and differential geometry. The central notion is that of a dynamical system that exchanges matter, energy, or information with its surroundings, i.e. an "open" dynamical system. The mathema tization of this notion evolved considerably over the years. The early development centered around the input/output point of view and led to important results, particularly in controller design. Thinking about open systems as a "black box" that accepts stimuli and produces responses has had a wide influence also in areas outside engineering, for example in biology, psychology, and economics. In the early 1960's, especially through the work of Kalman, input/state/output models came in vogue. This model class accommodates very nicely the internal initial conditions that are essentially always present in a dynamical system. The introduction of input/state/output models led to a tempestuous development that made systems and control into a mature discipline with a wide range of concepts, results, algorithms, and applications.
"synopsis" may belong to another edition of this title.
`...the book provides interesting and engaging reading, particularly to those who wish to learn about the algebraic-geometric aspects of control theory.'
Mathematical Reviews, 2002
Algebraic analysis, that is the algebraic study of systems of partial differential equations by means of module theory and homological algebra, was pioneered around 1970 by M. Kashiwara, B. Malgrange, and V.P. Palamodov. The theory of differential modules, namely modules over a noncommutative ring of differential operators, is a fashionable subject of research today. However, despite its fundamental importance in mathematics, it can only be found in specialist books and papers, and has only been applied in control theory since 1990. This book provides a self-contained and exhaustive account of algebraic analysis and its application to control systems defined by partial differential equations. The first volume presents the mathematical tools needed from both commutative algebra, homological algebra, differential geometry and differential algebra. The second volume applies these new methods in order to study the structural and input/output properties of both linear and nonlinear control systems. Hundreds of explicit examples allow the reader to gain insight and experience in these topics.
The book is written at a graduate level and is intended for researchers in mathematics, mathematical physics, computer algebra, control theory, and theoretical mechanics"About this title" may belong to another edition of this title.
£ 12.74 shipping from Germany to United Kingdom
Destination, rates & speeds£ 21.37 shipping from Germany to United Kingdom
Destination, rates & speedsSeller: exlibris24 Versandantiquariat, Freiburg im Breisgau, Germany
Hardcover. Condition: Gut. Einbände mit geringen Gebrauchs-/Regalspuren - ansonsten saubere und sehr gute Bände. Hardcover. 963 Seiten. 1636 Gramm. 24x16cm. Englisch. Lieferumfang: Beide Volumes/Bände. Volume I: Mathematical Tools (ISBN 079237035X; VIII, 566 Seiten; 942 Gramm) / Volume II: Control Systems (ISBN 0792370368; Seiten 567 bis 957; 694 Gramm). Seller Inventory # 69877
Quantity: 1 available
Seller: moluna, Greven, Germany
Condition: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The mathematical theory of open dynamical systems is a creation of the twentieth century. Its humble beginnings focused on ideas of Laplace transforms applied to linear problems of automatic control and to the analysis and synthesis of electrical circuits. Seller Inventory # 5969866
Quantity: Over 20 available
Seller: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germany
Buch. Condition: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The mathematical theory of 'open' dynamical systems is a creation of the twentieth century. Its humble beginnings focused on ideas of Laplace transforms applied to linear problems of automatic control and to the analysis and synthesis of electrical circuits. However during the second half of the century, it flowered into a field based on an array of sophisticated mathematical concepts and techniques from algebra, nonlinear analysis and differential geometry. The central notion is that of a dynamical system that exchanges matter, energy, or information with its surroundings, i.e. an 'open' dynamical system. The mathema tization of this notion evolved considerably over the years. The early development centered around the input/output point of view and led to important results, particularly in controller design. Thinking about open systems as a 'black box' that accepts stimuli and produces responses has had a wide influence also in areas outside engineering, for example in biology, psychology, and economics. In the early 1960's, especially through the work of Kalman, input/state/output models came in vogue. This model class accommodates very nicely the internal initial conditions that are essentially always present in a dynamical system. The introduction of input/state/output models led to a tempestuous development that made systems and control into a mature discipline with a wide range of concepts, results, algorithms, and applications. 980 pp. Englisch. Seller Inventory # 9780792370376
Quantity: 2 available
Seller: AHA-BUCH GmbH, Einbeck, Germany
Buch. Condition: Neu. Druck auf Anfrage Neuware - Printed after ordering - The mathematical theory of 'open' dynamical systems is a creation of the twentieth century. Its humble beginnings focused on ideas of Laplace transforms applied to linear problems of automatic control and to the analysis and synthesis of electrical circuits. However during the second half of the century, it flowered into a field based on an array of sophisticated mathematical concepts and techniques from algebra, nonlinear analysis and differential geometry. The central notion is that of a dynamical system that exchanges matter, energy, or information with its surroundings, i.e. an 'open' dynamical system. The mathema tization of this notion evolved considerably over the years. The early development centered around the input/output point of view and led to important results, particularly in controller design. Thinking about open systems as a 'black box' that accepts stimuli and produces responses has had a wide influence also in areas outside engineering, for example in biology, psychology, and economics. In the early 1960's, especially through the work of Kalman, input/state/output models came in vogue. This model class accommodates very nicely the internal initial conditions that are essentially always present in a dynamical system. The introduction of input/state/output models led to a tempestuous development that made systems and control into a mature discipline with a wide range of concepts, results, algorithms, and applications. Seller Inventory # 9780792370376
Quantity: 1 available
Seller: buchversandmimpf2000, Emtmannsberg, BAYE, Germany
Buch. Condition: Neu. Neuware -The mathematical theory of 'open' dynamical systems is a creation of the twentieth century. Its humble beginnings focused on ideas of Laplace transforms applied to linear problems of automatic control and to the analysis and synthesis of electrical circuits. However during the second half of the century, it flowered into a field based on an array of sophisticated mathematical concepts and techniques from algebra, nonlinear analysis and differential geometry. The central notion is that of a dynamical system that exchanges matter, energy, or information with its surroundings, i.e. an 'open' dynamical system. The mathema tization of this notion evolved considerably over the years. The early development centered around the input/output point of view and led to important results, particularly in controller design. Thinking about open systems as a 'black box' that accepts stimuli and produces responses has had a wide influence also in areas outside engineering, for example in biology, psychology, and economics. In the early 1960's, especially through the work of Kalman, input/state/output models came in vogue. This model class accommodates very nicely the internal initial conditions that are essentially always present in a dynamical system. The introduction of input/state/output models led to a tempestuous development that made systems and control into a mature discipline with a wide range of concepts, results, algorithms, and applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 980 pp. Englisch. Seller Inventory # 9780792370376
Quantity: 2 available